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ABSTRACT
Single-Side-Band transform (SSB) is an important real-
valued time-frequency representation, often preferred in ap-
plications involving speech signals. In this paper, the prob-
lems of system identification and dereverberation are ad-
dressed using the SSB transform. First, an analytical relation
between the input and the output signals is derived in the SSB
domain. Then, a system identification routine is formulated
for a band-to-band approximation of that relation. Second,
the dereverberation problem is addressed, using a statistical
model for the acoustic impulse response (AIR) function. Ex-
act and approximate representations of the AIR and the re-
verberant signal are derived directly in the SSB domain. The
performance of the dereverberation algorithm is evaluated as
a function of the representation complexity. Finally, the SSB
and the short-time Fourier transform (STFT) representations
are compared for the application of dereverberation.

Index Terms— Dereverberation, Single-Side-Band
Transform, System Identification

1. INTRODUCTION

The Single-Side-Band (SSB) transform is an important time-
frequency representation. Unlike the short-time Fourier trans-
form (STFT), the SSB representation has real-valued channel
signals instead of complex valued signals, and therefore it is
often the choice in real-time low-cost applications involving
communication, coding systems and speech processing. The
SSB can be realized in an efficient manner by sharing com-
putations among channels, employing efficient methods for
decimation and interpolation, and by using fast algorithms for
modulation and demodulation.
In this work, we employ the SSB transform in two related

subjects: system identification and dereverberation. System
identification is of major importance in many applications, in-
cluding acoustic echo cancellation [1], beamforming [2], and
dereverberation [3, 4]. As a first step in identification we de-
rive an analytical expression for the impulse response of a lin-
ear time invariant (LTI) system in the SSB domain, and pro-
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pose a possible approximation for that expression. We then
present an offline system identification procedure for the ap-
proximation using a least squares (LS) criterion and investi-
gate the performance of the identification for different signal-
to-noise (SNR) conditions.
The second problem addressed in this work is derever-

beration via a spectral enhancement method, that assumes a
statistical model for the AIR [5, 6]. Based on one of the sta-
tistical models proposed in [7, 8], the algorithm estimates the
late reverberant spectral variance (LRSV) component, which
is the main contributor to the degradation of the signal. The
clean speech signal is then estimated using one of the methods
presented in [9–11].
In many existing dereverberationmethods, the AIRmodel

is defined in the time domain, and suppression of late rever-
beration is performed in the STFT domain [5,6,12]. Alterna-
tively, defining the AIR in the STFT domain requires to incor-
porate cross-band filters, in order to achieve a sufficiently ac-
curate representation [13], which complicates the algorithm’s
implementation. Therefore, we apply a formulation of the
AIR model and the reverberated signal directly in the SSB
domain, using approximate representations. Then we study
how the dereverberation performance depends on the number
of cross-bands. Finally, we compare the performance using
the SSB transform to the one obtained using the STFT repre-
sentation.
This paper is organized as follows. Section 2 describes

an LTI system representation in the SSB domain. Section
3 addresses the problem of system identification. Section 4
presents the dereverberation in the SSB domain. Experimen-
tal results are demonstrated in Section 5.

2. REPRESENTATION OF LTI SYSTEMS IN THE
SSB DOMAIN

In this section, we derive an analytical relation between the
input and the output signals of an LTI system in the SSB
domain. Throughout this paper, unless explicitly noted, the
summation indexes range from −∞ to ∞. The SSB repre-
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sentation of a signal x(n) is given by

Xm,k = Re

[∑
n

ψ̃(mM − n)x(n)e
jπm

2 W−kn
K

]
(1)

where ψ̃ denotes the analysis window, m the frame index, k
the frequency-band index, M the decimation factor and K

represents the number of frequency bands used in the trans-
form.WK is defined as

WK = e
2πj

K . (2)

The inverse SSB transform is given by

x(n) =
1

K

K−1∑
k=0

∑
m

Re
[
ψ(mM − n)Xm,ke

−
jπm

2 W kn
K

]
(3)

where ψ denotes the synthesis window. Let h(n) denote an
impulse response of an LTI system of length Q. The output
signal in the SSB domain is given by

Ym,k = Re

[∑
n

ψ̃(n−mM)

Q−1∑
l=0

h(l)x(n− l)e
jπm

2 W−kn
K

]
.

(4)
After some manipulations Ym,k can be written as

Ym,k =
1

K

K−1∑
k′=0

∑
m′

Hm,m′,k,k′Xm′,k′ (5)

where

Hm,m′,k,k′ =
∑
n

ϑ1m,k,n

Q−1∑
l=0

h(l)ϑ2m′,k′,n−l
(6)

with

ϑ1m,k,n
= ψ̃(mM − n) cos

(
πm

2
−

2πkn

K

)

ϑ2m′,k′,n = ψ(n−m′M) cos

(
πm′

2
−

2πk′n

K

)
(7)

We refer to Hm,m′,k,k′ for k = k′ as a band-to-band filter
and for k �= k′ as a cross-band filter. In order to simplify
the expression in (6) we propose approximate representations
which employ only part or none of the cross-band filters. For
an approximation which uses 2Kmax cross-bands, the output
signal is given by

Ym,k =
1

K

k+Kmax∑
k′=k−Kmax

∑
m′

Hm,m′,k,k′Xm′,k′ . (8)

For Kmax = 0 the approximate representation uses only the
band-to-band filter.

3. SYSTEM IDENTIFICATION IN THE SSB DOMAIN

In this section, we consider system identification in the SSB
domain using the band-to-band approximation and an LS op-
timization criterion. The input signal x(n) passes through an
unknown system characterized by its impulse response h(n),
resulting in the desired signal d(n). Together with the back-
ground white noise v(n), the output signal is given by

y(n) = d(n) + v(n) = h(n) ∗ x(n) + v(n) . (9)

From (9) and (5), the SSB representation of y(n)may be writ-
ten as

Ym,k = Dm,k+Vm,k =
1

K

K−1∑
k′=0

∑
m′

Hm,m′,k,k′Xm′,k′+Vm,k

(10)
where Vm,k is the SSB transform of v(n).
Let us define Nxh as the number of time samples of the

filter Hm,m′,k,k′ , with the index m. Similarly, Nx is defined
as the number of cross-time samples of that filter, with the
indexm′.
Let Hbb

m,k be the band-to-band filter for time sample m and
frequency band k:

H
bb
m,k =

[
Hbb

m,0,k Hbb
m,1,k · · · Hbb

m,Nx−1,k

]T (11)

and let Hbb
k denote a column-stack concatenation of the

above band-to-bandfilter
{
H

bb
m,k

}Nxh−1

m=0
for all the time sam-

plesm:

H
bb
k =

[
H

bb
0,k

T
H

bb
1,k

T
· · · · · · H

bb
Nxh−1,k

T
]T

.

(12)
The dimensions ofHbb

k are Nxh ×Nx. LetXk be the signal
X at band k and let

Δk =

⎡
⎢⎢⎢⎣

Xk 0 · · · · · · 0
0 Xk 0 · · · 0
...

...
...

...
...

0 · · · · · · 0 Xk

⎤
⎥⎥⎥⎦ (13)

represent a sparse matrix constructed from the input signal
SSB coefficients of the k-th frequency-band, replicated Nxh

times, where each replication is shifted by Nx columns with
respect to the previous line. Now we can write the band-to-
band estimate of the desired signalDk in a vector form as

D
bb
k = ΔkH

bb
k . (14)

This represents the SSB coefficients of the output signal at the
k-th frequency-band, resulting from only the band-to-bandfil-
terHk.
Using the above notations, the LS optimization problem

can be expressed as

Ĥ
bb
k = argmin

Hbb

k

∥∥Yk −ΔkH
bb
k

∥∥2 . (15)
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The solution to (15) is given by

Ĥ
bb
k =

(
Δ

H
k Δk

)−1
Δ

H
k Yk (16)

where we assumed that ΔH
k Δk is not singular (otherwise,

some regularization is included). Substituting (16) into (14),
we obtain

D̂
bb
k = ΔkĤ

bb
k (17)

which is the estimate of the desired signal in the SSB domain
at the k-th frequency-band using a band-to-band filter.

3.1. MSE computation

After calculating the estimated signal, we can analyse the
mean-squared error (MSE) from two aspects:

1. An estimated error - derived by calculating the MSE
between the estimated signal, D̂bb

k , and the real signal
Dm,k as defined in (10):

εestimate =

E

{∥∥∥Dk − D̂
bb
k

∥∥∥2}

E
{
‖Dk‖

2
} . (18)

2. A theoretical error - derived by calculating the MSE
between the estimated signal, D̂k, and the signal Dbb

k

as defined in (14):

εtheory =

E

{∥∥∥Dbb
k − D̂

bb
k

∥∥∥2}

E
{∥∥Dbb

k

∥∥2} . (19)

4. DEREVERBERATION IN THE SSB DOMAIN

In a reverberant environment, the AIR model in the time do-
main is given by [6]

h(n) =

{
bd(n) if 0 ≤ n < Ts

br(n)e
−δ(k)n if n ≥ Ts

(20)

where δ(k) denotes the decay rate related to the reverberation
time, bd(n) and br(n) are zero-mean mutually independent
and identically distributed (i.i.d.) Gaussian random variables,
and Ts is the time when the early reflections end.
Assuming that the path from the source to the microphone

can be treated as an LTI system, and using (5) and (20), we
can express the reverberant signal y(n) in the SSB domain
as:

Ym,k =
1

K

K−1∑
k′=0

∑
m′

Hm,m′,k,k′Xm′,k′ =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
K

K−1∑
k′=0

∑
m′

(∑
n

ϑ1m,k,n

Q−1∑
l=0

bd(l)ϑ2m′,k′,n−l
Xm′,k′

)
,

if 0 ≤ m < Ne,

1
K

K−1∑
k′=0

∑
m′

(∑
n

ϑ1m,k,n

Q−1∑
l=0

br(l)e−δ(k)lϑ2m′,k′,n−l
Xm′,k′

)
,

ifm ≥ Ne.
(21)
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Fig. 1. Theoretical and estimated MSE curves for the band-to-band identi-
fication system, as a function of SNR for a white Gaussian noise input signal.

The parameter Ne specifies the portion of the AIR that is
considered as late reverberations, and is related to Ts in the
time domain.
Assuming that the SSB coefficients of the speech signal

can be modelled as zero-mean i.i.d real random variables with
a certain distribution and variance λx(m, k), the expression
for the reverberant component as presented in [6] is:

λr(m, k) = [1− κ(k)] e−2δ(k)Rλr(m− 1, k)+

+κ(k)e−2δ(k)Rλy(m− 1, k)
(22)

where λy(m, k) = E
{
|Y (m, k)|

2
}
and κ(k) denotes the ra-

tio between the energy of the reverberant and the direct path.
The LRSV [5] is then given by

λl(m, k) = e−2δ(k)R(Ne−1)λr(m−Ne + 1, k) . (23)

5. EXPERIMENTAL RESULTS

The signals used in the simulations include synthetic white
Gaussian noise as well as real speech signals. Throughout
this section, the AIR was simulated according to the method
proposed in [14], with room dimensions of 6 × 8 × 5 m, and
a reverberation time of 500 ms. The SSB was implemented
using K = 32 frequency bands, Kaiser synthesis window of
4N + 1 = 129 samples, and the related bi-orthogonal analy-
sis window. The overlap between two successive frames was
50%.

5.1. System Identification

System identification results are shown under the assumption
of band-to-band filtering, for SNR conditions ranging from
−40 to 60 dB. Both the signal and the noise were white Gaus-
sian noise of 2000 samples. In this subsection the source-
microphone distance was 1 m, the length of the AIR was trun-
cated to Q = 700, and the sampling rate was 8 kHz.
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Fig. 2. Mean Spectral Variance of true and estimated LRSVs of speech
signal in the SSB Domain.

Figure 1 shows the graph of theoretical and estimated
MSE for different SNR conditions. The estimated-MSE, is
getting smaller as the SNR increases in spite of the fact that
the model neglects all the cross-band filters. On the other
hand, the theoretical-MSE remains almost constant after a
certain SNR. This is due to the fact that the LS optimization
was performed using the real output full-band signal. In other
words, the identified model is closer to the representation of
the full system, even though it lacks one dimension.

5.2. Dereverberation

In this subsection, we present and discuss results of dere-
verberation obtained using the SSB representation. The
simulated AIR was of length Q = 4096 and the source-
microphone distance varied between 0.5m and 3m. The pa-
rameter Ts was set to 48ms.
For qualitative evaluation of the LRSV estimationwe used

the mean spectral variance of the LRSV over all the frequency
bins, which is given by

Mean Spectral Variance [dB] = 10 log (meank {λl(m, k)})
(24)

TheMean Spectral Variance of the estimated LRSVwas com-
pared to the “true” LRSV, known from the AIR simulation
[14]. The quantitative evaluation of the LRSV estimator was
determined by the Log Spectral Distance measure. The dere-
verberation performance was evaluated using the mean seg-
mental Signal to Reverberation Ratio (SRR) and the mean
Log Spectral Distortion (LSD). Figure 2 shows the resulting
true and estimated mean LRSVs of speech signals in the SSB
domain, for a source-microphone distance of 1.3 m.
Figure 3 shows the dereverberation evaluation curves for a

speech signal as a function of source microphone distance for
the SSB and STFT representations. Clearly, the performance
using the STFT representation is higher, which implies that
real-valued representations are less suitable for dereverbera-
tion. This is associated with the fact that real-valued represen-
tations combine the phase information into the amplitude rep-
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Fig. 3. Dereverberation evaluation in the SSB domain in comparison to the
STFT domain. (a) Log Spectral Distance; (b) Mean LSD; (c) Mean SRR.

resentation. Consequently, in estimating the LRSV we have
to use a larger smoothing factor to compensate for multiple
reflections with different delays, and this degrades the perfor-
mance.

5.3. Cross-band analysis

Here, we analyse the dereverberation performance when us-
ing an increasing number of cross-bands such that 0 ≤
Kmax ≤ 15. The input signal is white Gaussian noise of
2000 samples. The sampling rate is 4 kHz, and the length of
the AIR is 1000 taps.
As can be seen from Figure 4, unlike the STFT case [13],

the contribution of the cross-band filters is distributed almost
equally along all the cross bands. Nevertheless, as was shown
in the system identification procedure, the band-to-band rep-

363



0 5 10 15
9

9.5

10

10.5

11

11.5

Number of cross bands

M
ea

n 
S

eg
m

en
ta

l S
R

R
 [d

B
]

Fig. 4. Mean SRR of the derverberation in the SSB Domain using various
numbers of cross-bands.

resentation sufficiently describes the system and thus yields
satisfying results with a low computational complexity.

6. CONCLUSIONS

We have investigated the SSB transform as a time-frequency
domain representation for speech signal processing. First, we
developed a formulation of LTI systems in the SSB domain.
Then we proposed system identification using a band-to-band
filter approximation. We showed that as SNR improves, the
identified band-to-band system becomes closer to the real sys-
tem, even though it lacks the cross-band dimension. This im-
plies that the band-to-band approximation can sufficiently de-
scribe the system. Hence, band-to-band approximation in the
SSB domain is suitable, e.g., for acoustic echo cancellation.
We also investigated the performance of dereverberation

in the SSB transform domain, compared to dereverberation
in the STFT domain. The evaluation measures show that the
STFT enables better results due to the fact it separates the
spectral magnitude and phase representations, and thus facili-
tates the LRSV estimation. Finally, we examined the relation-
ship between the AIR model complexity and the dereverbera-
tion performance, and showed that although the band-to-band
representation gives sufficient results, each additional cross-
band contributes to further improvement.
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