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ABSTRACT

Accurately estimating correlation between sources has signif-

icant impact on the performance of Slepian-Wolf (SW) cod-

ing. In this paper, we propose a low complexity estimator

based on Laplace propagation for exploiting the source corre-

lation at the decoder side, by modeling the correlation estima-

tion as a Bayesian inference problem. Through simulations,

we show that the proposed algorithm can simultaneously re-

construct a compressed source and estimate both stationary

and time-varying joint correlation between the sources at the

bit level. Furthermore, comparing to the conventional SW

decoder, the proposed approach can achieve a better decod-

ing performance under varying correlation statistics and the

proposed estimator shows a very fast convergence speed and

low complexity compared with state-of-the-art sampling ap-

proaches.

Index Terms— Source coding, Adaptive decoding

1. INTRODUCTION

Slepian-Wolf (SW) coding refers to lossless independent

compression and joint decompression of correlated sources

[1]. Numerous SW coding schemes have been proposed (e.g.,

[2, 3]) based on advanced channel coding. However, the

fundamental assumption in these designs is that the correla-

tion statistics needs to be known accurately a priori at the

decoder side. However, in many applications, such as sensor

networks, the correlation statistics cannot be obtained easily

and may vary over both space and time. Since decoding per-

formance of distributed source coding (DSC) relies heavily

on the knowledge of correlation, the design of an online cor-

relation estimation scheme becomes an important research

topic both theoretically and practically [4, 5, 6].

The estimation of the correlation statistics can be depicted
as a learning or an inference problem using graphical models
(our previous works, e.g. [7]), especially the factor graph. In
context of Bayesian inference, such a process is equivalent to
computing the posterior distribution of correlation parameter.
Therefore, given the side information (SI), Y , the posterior
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distribution of correlation parameter ρ, (that models the cor-
relation between source X and SI Y ) can be written as

p(ρ|Y ) =
p(ρ)p(Y |ρ)

p(Y )
, (1)

where p(ρ) is the prior distribution of the correlation param-
eter ρ, p(Y |ρ) is likelihood function, and p(Y ) is the model
evidence/normalization factor, which could be expressed in
the following marginalization form

p(Y ) =

∫

p(ρ)p(Y |ρ)dρ. (2)

Unfortunately, the exact posterior distribution (1) and the

normalization factor (2) are computationally tractable only in

few special cases, such as when (i) the prior distribution p(ρ)
and likelihood function p(Y |ρ) are both Gaussian (e.g., us-

ing Kalman filter) or (ii) the unknown ρ is a discrete variable

with small alphabet size (e.g., using belief propagation (BP)).

Unfortunately, in practice, the source correlation ρ is usually

a non-Gaussian distributed real variable, and thus approaches

are needed to find a good approximate solution.

During the past decade, there have been many differ-

ent approximate inference methods proposed in the research

community. In general, these approximation methods can

been summarized into the following two categories: stochas-

tic and deterministic approximations. Stochastic techniques,

such as sequential Monte Carlo (also known as the sampling

method or particle filters (PF)), can be adopted and applied to

most scenarios although they are computational demanding.

Deterministic techniques, including the Laplace’s method,

Expectation propagation, and variational approximations,

provide some low complexity alternatives based on analytical

approximations. Compared with Monte Carlo techniques,

deterministic approximation typically is much faster but is

less flexible, since it can only approximate unimodal poste-

rior distributions. Moreover, it is also more mathematically

involved.

Although a key DSC-design requirement is a low com-

plexity encoder, many applications demand fast and low com-

plexity decoding. Therefore, the study of low complexity on-

line estimation schemes is becoming increasingly important

and a viable solution is deterministic approximation. Among
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existing deterministic approximation methods, Laplace prop-

agation (LP) algorithm offers a ultra-low computational com-

plexity. In this paper, we propose an online correlation es-

timation scheme based on LP, which is carried out jointly

with decoding of a factor graph-based SW code. In addition,

we compare the performance of the proposed LP estimator

with sampling based estimator [11]. Our simulation results

show that LP estimator offers a ultra-low computational com-

plexity, as well as maintains a comparable estimation perfor-

mance.

2. RELATED WORK

In this paper we consider the asymmetric SW coding problem

(or source coding with SI), where the relationship between

two binary correlated sources X and Y is modeled as a vir-

tual binary symmetric channel (BSC). For the BSC crossover

probability estimation, several algorithms have been stud-

ied in the literature. In [4], the residual redundancies in

low-density parity-check (LDPC) syndromes are used to esti-

mate the crossover probability between two correlated binary

sources using Mean-Intrinsic-LLR. However, this algorithm

works only for highly correlated sources. In [5, 6], the

expectation maximization (EM) algorithm was used to esti-

mate the crossover probability, and the crossover probability

is assumed to be constant and does not change within each

codeword block. In [7], the authors considered the problem of

adaptive correlation estimation based on factor graph, which

can handle sources with both weak and strong correlations

and the correlation statistics may vary dynamically. However,

the proposed scheme in [7] is based on the stochastic approx-

imation method, which involves a significant computational

overhead at the decoder. To reduce the impact of decod-

ing delay, it is necessary to keep the estimation complexity

as low as possible, but without sacrificing decoding perfor-

mance (i.e., estimation accuracy). This is what motivates the

work in this paper, where we explore an LP based correlation

estimator for the SW decoding problem.

3. THE PROPOSED SCHEME

3.1. Factor graph construction of the SW decoder with

crossover probability estimation

We consider the asymmetric SW coding case with two binary

correlated sources X and Y , where the correlation is modeled

as a virtual BSC with time-varying crossover probability.
The traditional LDPC-based SW decoding factor graph

is shown in Fig. 1 (Regions II and III). Here, a block
(x1, x2, · · · , xN ) is compressed into M syndrome bits s1, s2,
· · · , sM , thus resulting in M : N compression, and xi and yi
are realizations of Xi and Yi, respectively. Syndrome factor
nodes hk, k = 1, 2, . . . ,M shown in Region III take into
account the constraints imposed by the received syndrome
bit sk. Factor node fi shown in Region II plays the role of
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Fig. 1. Factor graph of adaptive SW decoding.

providing a predetermined likelihood p(yi|xi, ρ) to variable
node Xi for LDPC-based SW decoding, where ρ denotes the
crossover probability. According to the relationship between
xi and yi in BSC, the corresponding factor function of fi is
defined as

fi(ρ, xi, yi) = ρ
xi⊕yi(1− ρ)1⊕xi⊕yi , (3)

where ⊕ is the bitwise sum of two elements. With the de-

fined factor functions, source X can be decoded by perform-

ing standard BP on Regions II and III in Fig. 1.

In practice, however, it is not easy to obtain perfect knowl-

edge of crossover probability at the decoder side. In addition,

another important practical issue is that the crossover proba-

bility may vary over time, i.e, ρ(t) = ρt. Thus, in the case

without feedback channels, it is imperative to perform an on-

line crossover probability estimation to avoid the degradation

of decoding performance. It also means that each factor node

fi will periodically update the likelihood p(yi|xi, ρt) for cor-

responding bit variable node Xi when a new crossover prob-

ability estimate of ρt is available, instead of using a predeter-

mined likelihood.

To enable the online estimation of time-varying crossover
probability ρt, we introduce extra variable nodes Pj and fac-
tor nodes gj , j = 1, 2, . . . , N ′ (see Region I of Fig. 1). Here,
we call the number of factor nodes in Region II connecting
to each variable node Pj the connection ratio C 1, which is
equal to four in Fig. 1. Each variable node Pj in Region I is
used to model the time-varying crossover probability ρt of a
block of C code bits. Moreover, the factor function gj(ρj)
of factor node gj corresponds to the a priori distribution for
variable ρj . Consequently, by introducing the crossover prob-
ability estimation in Region I, the likelihood factor function
(3) becomes:

fi(ρj , xi, yi) = ρ
xi⊕yi
j (1− ρj)

1⊕xi⊕yi . (4)

1To estimate a stationary crossover probability, we can set the connection

ratio equal to the code length.
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3.2. Posterior approximation of crossover probability

In Bayesian inference, the estimation of crossover probability
ρj corresponds to the estimation of its posterior distribution,

i.e., p(ρj |yj), where yj = (yi|i ∈ N \gj (Pj)), and N \gj (Pj)
represents the set of all neighbor’s indices for a variable node
Pj except the index of gj . According to the Bayes’ rule, the
posterior distribution over variable ρj in Fig. 1 can be written
as

p(ρj |yj) =
1

Zj

∏

i∈N
\gj (Pj)

p(ρj)p(yi|ρj)

=
1

Zj

∏

i∈N
\gj (Pj)

∫

xi

p(ρj)p(xi)p(yi|xi, ρj)

=
1

Zj

g(ρj)
∏

i∈N
\gj (Pj)

∑

xi

fi(ρj , xi, yi)mXi→fi(xi),

(5)

where Zj =
∫
ρj

∏
i∈N\gj (Pj)

p(ρj)p(yi|ρj) is a normaliza-

tion constant, p(ρj) = gj(ρj), p(yi|xi, ρj) = fi(ρj , xi, yi),
the a priori distribution p(xi) is captured by the message
mXi→fi(xi) with binary sources xi taking 0 or 1 defined in
[8]. Moreover, according to message passing algorithm [8],
the posterior distribution (5) can be written as

p(ρj |yj) =
1

Zj

mgj→Pj (ρj)
∏

i∈N
\gj (Pj)

mfi→Pj
(ρj). (6)

However, to infer the parameter ρj , direct evaluation of
the posterior distribution through (6) is infeasible, since the
message

mfi→Pj
(ρj) =

∑

xi∈[0,1]

f(ρj , xi, yi)mXi→fi(xi) (7)

has two terms and the product of all the messages

∏

i∈N
\gj (Pj)

mfi→Pj
(ρj) (8)

has a total of terms 2C , where C can be a large number. In

the following section, we resort to an approximate inference

LP algorithm to solve this problem.

4. LP FOR POSTERIOR APPROXIMATION

4.1. LP algorithm

Laplace’s method [9], also known as the saddle-point approx-
imation, approximates a density function p(θ|D) with param-
eter θ by a Gaussian q(θ|D) around its peak, where D is a set
of observations. The mean and variance of the Gaussian are
approximated, respectively, as

m = argmaxθlogp(θ|D) =: θ̂

v
−1 = −∂

2
θlogp(θ|D)|θ=θ̂.

(9)

This method, when applied directly to our problem, results in

a large computation cost. However, if the possibility den-

sity function can be written as a product of several terms

p(θ|D) =
∏

i fi(θ), each of which only contains a small

number of variables (e.g., p(ρj |yj) in (6)), then the approx-

imate distribution q(θ) of p(θ|D) can be obtained by itera-

tively finding the approximate of each term. Here, the approx-

imate f̃i(θ) of each true term fi(θ) is achieved by performing

Laplace approximate on qi(θ) = fi(θ)
∏

j 6=i f̃j(θ) for all i

until convergence. This is referred to as the LP algorithm

[10].

4.2. Prior function

In our problem of the crossover probability estimation, the LP

algorithm needs to optimize each message term of the posteri-

ori in (6). The message mgj→Pj
(ρj) corresponds to the prior

distribution of ρj defined by the prior function g(vj). If the

prior probability distribution and posterior distribution are in

the same exponential family, which is named conjugate prior

for the likelihood, it is computationally favorable to obtain

the posterior. Thus, we choose a conjugate prior for the like-

lihood function (4).
Likelihood function (4) can be represented in terms of

Beta distribution Beta(x, α, β) with respect to variable ρj as
parameter:

fi(ρj , xi, yi) = beta ((xi ⊕ yi) + 1, (1⊕ xi ⊕ yi) + 1)

× Beta (ρj , (xi ⊕ yi) + 1, (1⊕ xi ⊕ yi) + 1) ,

(10)

Beta(x, α, β) =
1

beta(α, β)
x
α−1(1− x)β−1

, (11)

where α and β are shape parameters and beta(α, β) is Beta

function. Since Beta distribution is the conjugate prior for

itself, we choose g(ρj) = Beta(ρj , α
0
j , β

0
j ) as the prior distri-

bution with the prior shape parameters α0
j and β0

j . Here, we

let α0
j = 2 and β0

j =
α0

j−1

ρ0 + 2− α0
j , the values which guar-

antee the mode of prior distribution to be equal to the initial

crossover probability ρ0j .

4.3. LP for posterior approximation

The proposed LP algorithm for crossover probability estima-

tion is shown next. Here, we drop the dependency of ρj on

yj in (6) for simplicity.

1. Initialize the prior term

m̃gj→Pj (ρj) = N (ρj ,m
0
j , v

0
j ) (12)

with

m
0
j =

α0
j − 1

α0
j + β0

j − 2
, z

0
j =

1
√

2πv0j

v
0
j =

(−1 +m0
j )

2(m0
j )

2

−1 + α0
j (−1 +m0

j )
2 + 2m0

j + (−2 + β0
j )(m

0
j )

2

(13)
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Initialize the approximation term

m̃fi→Pj
(ρj) = N (ρj ,mij , vij) (14)

with mij = 0, vij = ∞, zij = 1.

2. Initialize the mean and variance of the approximate nor-
mal distribution of posterior q(ρj)

m
new
j = m

0
j , v

new
j = v

0
j (15)

3. For each variable node Pj

For each factor node fi, where i ∈ N (Pj)

(a) Remove m̃fi→Pj
(ρj) from the posterior q(ρj),

we get q\Pj (ρj) = N (ρj ,m
tmp
j , v

tmp
j )

v
tmp
j = (

1

vnew
j

− 1

vij
)−1

m
tmp
j = v

tmp
j (

mnew
j

vnew
j

− mij

vij
)

(16)

(b) Update qnew(ρj) according to the Laplace’s
method and get mnew

j and vnew
j

vnew
j =



vc +
1

v
tmp
j





−1

, Zj =
1

√

2πvnew
j

mnew
j =

m
tmp
j +

(−Lr(x))1−y

1−Lr(x)
±

√
△

2

(17)

where vc =
(Lr(x)−1)2

(Lr(x)(1−y)(−1+mnew
j

)−Lr(x)ymnew
j

)2
,

△ = (m
tmp
j − (−Lr(x))1−y

1−Lr(x) )2 + 4v
tmp
j , and the ±

for
√△ is decided by the values of y and Lr(x) =

mXi→fi
(0)

mXi→fi
(1) .

(c) Set approximated message

vij = (
1

vnew
j

− 1

v
tmp
j

)−1

mij = vij(
mnew

j

vnew
j

−
m

tmp
j

v
tmp
j

)

zij = Zj
1√
vij

v
tmp
j

√

v
tmp
j − vnew

j

exp
(mnew

j −m
tmp
j )2

2(v
tmp
j − vnew

j )

(18)

5. RESULTS

In this section, the decoding performance of standard BP,

LP based BP decoders, and particle based BP (PBP) decoder

in [11] are presented in the presence of a crossover proba-

bility mismatch. Here, we consider two different scenarios,

constant crossover probability mismatch and time-varying

crossover probability.
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Fig. 3. Estimation of the time-varying crossover probability using

the proposed LP estimator .

We first study the estimation accuracy of the proposed LP

estimator for constant crossover probability in Fig. 2. In this

case, SW coding based on a regular LDPC code with code rate

R = 0.7 and code length N = 1000 is used in our simulation.

Since the constant crossover probability is considered, there

is only one variable node in Region I, which means that the

connection ratio C is set to 1000. All the results are obtained

over 100 trials. Initial crossover probabilities used for BP de-

coding are always for 0.1 above true crossover probabilities.

The maximum number of iterations for BP decoding is equal

to 50. Since we only focus on estimation accuracy, the LP

estimator is only used once at the end of the BP decoding. To

achieve the best decoding performance, new estimates can be

sent back to the SW decoder periodically, and this setup will

be studied later in this section. We can see from Fig. 2 that

the LP estimator always converges within 3 or 4 iterations.

Second, we study the performance of the proposed LP es-

timator for time-varying crossover probability. Fig. 3 shows

the estimate of a sinusoidally changing crossover probability,

where N = 10, 000, C = 50, the minimum and maximum

value of sinusoidal signal are 0.05 and 0.3, respectively, and

the initial value ρ0 = 0.25 is for 0.1 above the mean of true

crossover probability. It can be seen that the proposed LP es-

timator provides an accurate estimate even though the initial

crossover probability is far away from the mean.

Finally, in Figs. 4 and 5, we study the decoding per-

formance of an LDPC based SW decoder with and without

LP/PBP estimator. The following results are obtained over

10,000 trials and with the codeword length of 104 bits. The

LP/PBP estimator starts after 50 BP iterations and is applied
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Fig. 4. Bit error rate (BER) vs. compression ratio for the LDPC-

based SW decoder using 1) BP assuming crossover probability for

0.1 above the true value; 2) LP-based BP; 3) PBP decoder for a con-

stant crossover probability.

periodically every 20 BP iterations until the BP decoder suc-

cessfully decodes the codeword or reaches its maximum num-

ber of 150 iterations. In Fig. 4, the crossover probability

is considered as constant and the initial crossover probabili-

ties are for 0.1 above the true crossover probabilities for all

schemes. We can observe a large performance gap between

the BP decoder and LP-based BP decoder in the presence

of a crossover probability mismatch, while the performance

of the proposed LP based decoder is similar to that of the

PBP decoder. In Fig. 5, decoding performance with time-

varying crossover probability is investigated, where a sinu-

soidally changing crossover probability is described as the

aforementioned model in Fig. 3. We can see that the pro-

posed LP based decoder obtained a much better performance

than the BP decoder with the mean of time-varying crossover

probability, and there is only a small performance gap be-

tween the LP based decoder and PBP decoder. Note that

the additional computational overhead introduced by the pro-

posed LP estimator is very small. In addition, compared to

the PBP decoder, which mainly uses Monte Carlo techniques,

the proposed LP based decoder has ultra-low computational

complexity.

6. CONCLUSION

For a DSC problem with unknown correlation statistics, we

proposed a factor graph associated with an LP estimator for

SW decoding and stationary/time-varying correlation estima-

tion. The experimental results show that the proposed scheme

is not sensitive to the initial knowledge of the source correla-

tion and can precisely track both the stationary and the time-

varying source correlation. Moreover, the proposed scheme

yields a better decoding performance than the standard BP

algorithm and shows a comparable performance to the signif-

icantly more complex PBP decoder. Finally, the proposed LP

estimator also shows a very fast convergence speed with only

few iterations and ultra-low complexity compared to the PBP
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Fig. 5. Bit error rate (BER) vs. compression ratio for the LDPC-

based SW decoder using 1) BP assuming mean crossover probabil-

ity; 2) LP-based BP; 3) PBP decoder for a time-varying crossover

probability.

decoder.
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