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ABSTRACT

This paper investigates Zero Forcing (ZF) precoding in
MIMO FB channels subject to individual channel power
constraints. It shows that the optimal ZF precoder is non-
causal in general and presents a general formulation for the
design of optimal noncausal ZF precoder subject to individ-
ual channel power constraints. A convex optimization based
method is derived from the formulation to design optimal
noncausal precoder. Numerical example demonstrates the
effectiveness of the design method and the advantage of the
designed optimal noncausal ZF precoder.

Index Terms— Zero-forcing precoding, oversampled fil-
ter banks, noncausal systems, convex optimization

1. INTRODUCTION

Zero-Forcing (ZF) precoding has proved to be an efficient ap-
proach to eliminating the inter-channel and inter-symbol in-
terferences, and it has been extensively investigated in [1, 2,
3, 4, 5, 6, 7, 8]. In MIMO system, if the number of transmit-
ters is greater that of receivers, the system is redundant. Un-
like in non-redundant systems where ZF precoder is uniquely
given by the channel inverse, the ZF precoder in redundant
MIMO systems is not unique. This non-uniqueness allows
for the incorporation of other design requirements, such as
transmission power constraints, in the design of ZF precoder.

Transmission power is always bounded in real commu-
nication systems. There are two power constraint schemes
in MIMO communication system - the total power constraint
and the individual channel power constraint. In total power
constraint design, the sum of all individual transmitter power
is constrained, but it lacks the restriction on the power of
each individual transmitter. The output power in this design
may concentrate on a few transmitters, exceeding their out-
put power limits. In practice, each transmitter has its unique
output power limit, especially in distributed systems. Hence,
the design under individual power constraints is more realistic
and more important in practice.

ZF precoder design for constant matrix channel is thor-
oughly studied in [3] for both total power constraint and indi-
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Fig. 1. MIMO communication system with precoder

vidual channel power constraint. However, the constant ma-
trix channel are not applicable to wide band communication
channels or high rate data transmission because of the fre-
quency selective fading. In these situations, the MIMO com-
munication channel behaves more like an MIMO linear dy-
namic system than a constant matrix [9], and can be modeled
by FIR filter bank (FB) [1].

The design of ZF precoder for FB channels with total
power constraint is systematically studied in [4, 6]. All these
works are confined to the causal precoders, and hence are
restricted to the minimum phase FB channels. Due to the
causality constraint, these designs generally achieve lower
signal-to-noise ratio (SNR) than noncausal design. With the
advance of fast DSP processors, the noncausal precoder can
now be implemented for FIR FB channel, having the un-
known initial conditions absorbed in finite taps. Noncausal
precoder eliminates the minimum phase restriction on the FB
channel required in the causal design [4], and can achieve
the (theoretically) maximum SNR. Our recent work [7] has
studied the design of noncausal ZF precoder with total power
constraint, and has demonstrated the advantages of noncausal
precoding. This paper extends the results of [7] to the non-
causal ZF precoding subject to individual channel power
constraints. It is motivated by the importance of individual
channel power constraints in practice as discussed above.

2. PROBLEM FORMULATION

Fig. 1 shows the diagram of an MIMO communication sys-
tem with precoding. In the diagram, x(k) ∈ CM , b(k) ∈ CN

and y(k) ∈ CM are respectively the input, transmitted and
received signals; x̂(k) ∈ CM is the channel output signal and
w(k) ∈ CM is the additive noise in transmission. H(z) ∈
CM×N is the polyphase matrix of FB channels with N trans-
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mitters and M receivers, N > M ; F (z) ∈ CN×M is the
precoder to be designed. The channel H(z) is always causal
but the precoder F (z) is not necessarily causal.

Assume that the precoder F (z) is designed to satisfy the
ZF condition H(z)F (z) = αI. Then the received signal y(k)
in Fig. 1 is given by

y(k) = x̂(k) + w(k) = H(z)F (z)x(k) + w(k)

= αx(k) + w(k).

Define the SNR of the received signal

SNR :=
Px̂

Pw
=

α2Px

Pw

and the SNR coefficient := α, where Px and Pw are the power
of input signal x(k) and additive noise w(k), respectively.
The SNR between the input signal x(k) and noise w(k) is
usually untunable, while the SNR coefficient α can be tuned
by precoder design. The larger the α is, the higher the SNR
of the received signal.

Denote H−1(z) the right inverse of H(z) satisfying
H(z)H−1(z) = I . Then the ZF precoder F (z) is given
by

F (z) = αH−1(z). (1)

Since H(z) ∈ CM×N and N > M , H−1(z) and hence F (z)
are not unique. The SNR coefficient α has an upper limit,
because the transmitting power of b(k) is always bounded in
practice. Assume without loss of generality that the power
spectral density of Sxx(e

jω) = I . Then, the total transmitting
power of b(k) is given by

Pb =
1

2π

∫ 2π

0

Tr{Sbb(e
jω)dω}

=
1

2π

∫ 2π

0

Tr{F (ejω)Sxx(e
jω)F ∗(ejω)dω}

= ∥F∥22 = α2∥H−1(z)∥22.

Denote Fj and H−1
j the jth rows of F (z) and H−1, respec-

tively. It then follows from the definitions for the power of
vector signal and the H2 norm of transfer function matrix [10]
that Pb =

∑N−1
j=0 Pb(j) = ∥F∥22 =

∑N−1
j=0 ∥Fj∥22 and

Pb(j) = ∥Fj∥22 = α2∥H−1
j ∥22 ≤ γj , ∀j ∈ [0, N − 1], (2)

where Pb(j) is the output power of the jth channel and γj is
its upper limit.

Since H−1(z) is not unique, there are many α and
H−1(z) satisfying (2). Thus, the design under individual
channel power constraints is to find an H−1(z) that solves
the following optimization problem:

max
α,H−1(z)

α2 (3)

subject to
H(z)H−1(z) = I (4)

α2∥H−1
j ∥22 ≤ γj , ∀j ∈ [0, N − 1]. (5)

3. EQUIVALENT DESIGN FORMULATION

3.1. State space expression of the set of right inverses

The non-unique H−1(z)s are the dual frame FBs of the FB
channel H(z) [7], and the set of all H−1(z)s can be rep-
resented in the state space for analysis and design compu-
tation by using the following notion from the linear system
theory: A rational causal discrete-time transfer matrix T (z)
can be represented by T (z) = D + C(zI − A)−1B. The
quadruple (A,B,C,D) is called a state-space realization of

T (z) and is denoted as T (z) =

[
A B
C D

]
. Similarly, an

anticausal T (z) can be represented in state space by T (z) =

D + C(z−1I −A)−1B =

[
A B
C D

]
ac

.

Theorem 1 Let H(z) =

[
A B
C D

]
∈ CM×N be the

polyphase FB model of the channel with A ∈ Rn×n and
H(ejω) being full row rank on ω ∈ [0, 2π). Then the set of
all H−1(z)s is given by

H−1(z) = H†(z) + Ñ⊥(z)V (z) (6)

where

H†(z) = H̃(z)[H(z)H̃(z)]−1 ∈ CN×M (7)

is the canonical dual frame FB of H(z), V (z) ∈ C(N−M)×M

is an arbitrary stable noncausal transfer matrix and Ñ⊥(z) ∈
CN×M is given by

Ñ⊥(z) =

[
(A+ LC)∗ C∗

⊥
(B + LD)∗ D∗

⊥

]
ac

. (8)

In (8),
L = −(AXC∗ +BD∗)P−1, (9)

where
P = P ∗ = DD∗ + CXC∗ (10)

and X ≥ 0 is the unique solution to the algebraic Riccati
equation

AXA∗ −X +BB∗ + L(CXA∗ +DB∗) = 0; (11)

C⊥ ∈ C(N−M)×n and D⊥ ∈ C(N−M)×N satisfy[
C⊥ D⊥

] [ XA∗ XC∗

B∗ D∗

]
= 0, (12)

C⊥XC∗
⊥ +D⊥D

∗
⊥ = I, (13)

and can be obtained by QR decomposition [11][
C⊥ D⊥

]
=

[
0 I(N−M)

]
Q∗

[
X− 1

2 0
0 IN

]
,

where the matrix Q is the orthogonal matrix in QR decompo-
sition [

X
1
2A∗ X

1
2C∗

B∗ D∗

]
. (14)
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Proof: The right inverse is the analysis dual frame of H(z)
and can be represented by [12]

H−1(z) = H†(z) + (I −H†(z)H(z))U(z), (15)

where H†(z) is the para-pseudo inverse of H(z) and U(z) is
the free parameter. It has been proved in [7] that H†(z) can
be written as H†(z) = Ñ(z)M(z), where N(z) and M(z)
is the left copirme factorization of H(z) satisfying H(z) =
M(z)−1N(z) [10]. Then, (15) can be written as

H−1(z) = H†(z) + (I − Ñ(z)M(z)M(z)−1N(z))U(z)

= H†(z) + (I − Ñ(z)N(z))U(z). (16)

Because [Ñ(z), Ñ⊥(z)] is unitary, (I − Ñ(z)N(z))U(z) in
(16) is given by Ñ⊥(z)N⊥(z)U(z). Letting free parameter
V (z) = N⊥(z)U(z) gives (6). 2

3.2. Equivalent optimization for design

Theorem 1 reveals that the right inverses (dual frame FBs)
of the FB channel H(z) are noncausal in general. It has
been proved in [7] that H−1 = H†(z), obtained by setting
V (z) = 0 in (6), has the minimum H2 norm and hence is
the optimal precoder that maximizes α under the total power
constraint. But H†(z) may not satisfy the individual chan-
nel power constraints in general. The solution for individual
channel power constraints can be found by searching the so-
lution set (6). The result is presented in Theorem 2 below by
using the following notations.

Define Λ := diag[γj ]j=0,1,··· ,N−1 and QD := the diago-
nal of Q, where γj is the individual power constraint for the
j-th channel as given in (2).

Theorem 2 Let F (z) = αH−1(z) =

[
AFc αBFc

CFc 0

]
+[

AFac αBFac

CFac αDFac

]
ac

be the state-space realization of the

ZF precoder given in (1). Then the design problem (3)-(5)
can be solved by the following optimization.

max
α,AFc,BFc,CFc,AFac,BFac,CFac,DFac,Pc,Pac,Qc,Qac

α2 (17)

subject to Pc PcAFc PcBFc

AT
FcPc Pc 0

BT
FcPc 0 α−2

 > 0, (18)

 Pac PacAFac PacBFac

AT
FacPac Pac 0

BT
FacPac 0 α−2

 > 0, (19)

[
Qc CFc

CT
Fc Pc

]
> 0, (20) Qac CFac DFac

CT
Fac Pac 0

DT
Fac 0 α−2

 > 0, (21)

Λ− (Qc +Qac)D > 0. (22)

Proof: For the causal part of F (z) = αH−1(z), suppose that
there exist matrices Pc = PT

c > 0 and Qc > 0 such that (18)
and (20) hold simultaneously. Then by Schur complement
[13], (18) implies that there exists Gc = GT

c = P−1
c > 0

such that

Gc −AFcGcA
T
Fc −BFcα

2BT
Fc > 0. (23)

According to [14] and §2.7 in [13], (23) holds for Gc = GT
c >

0 if and only if there exits a real matrix Goc = GT
oc > 0

satisfying Lyapunov equation

Goc −AFcGocA
T
Fc −BFcα

2BT
Fc = 0. (24)

Define G∆ := Gc − Goc. It then follows from (23) and (24)
that

(Gc −AFcGcA
T
Fc −BFcα

2BT
Fc)−

(Goc −AFcGocA
T
Fc −BFcα

2BT
Fc)

= G∆ −AFcG∆A
T
Fc > 0. (25)

Notice that the spectral radius ρ(AFc) < 1 since Fc(z) is
stable. Consequently, the inequality (25) implies that G∆ =
GT

∆ > 0 and Gc = Goc +G∆ > Goc > 0.
Because Goc satisfies Lyapunov equation (24), it follows

from [10] that ∥Fcj∥22 = CFc(j)GocCFc(j)
T , where CFc(j)

is the jth row of CFc and Fcj is the the jth channel of the
casual part of Fj . Further, from Gc > Goc it follows that

CFc(j)GcCFc(j)
T > CFc(j)GocCFc(j)

T = ∥Fcj∥22. (26)

Now decompose Qc into

Qc =

 Qc00 . . . Qc0(N−1)

...
. . .

...
Qc(N−1)0 . . . Qc(N−1)(N−1)

 .

Using above decomposition and Schur complement, (20) can
be written as (27). Since all the leading principle minors of a
positive definite matrix are positive definite, (27) implies that

Qcjj − (CFc(j)GcCFc(j)
T > 0,

Qcjj > 0, j = 0, 1, · · · , N − 1, (28)

where Gc = P−1
c has been used to obtain (28). Since Pc

satisfies (23) and (18), Gc in (28) satisfies (26). It follows
from (28) and (26) that

Qcjj > CFc(j)GcCFc(j)
T > CFc(j)GocCFc(j)

T

= ∥Fcj∥22, j = 0, 1, · · · , N − 1. (29)

Similarly for the anticausal part, it gives

Qacjj > CFac(j)GacCFac(j)
T +DFac(j)α

2DFac(j)
T

> CFac(j)GoacCFac(j)
T +DFac(j)α

2DFac(j)
T

= ∥Facj∥22, j = 0, 1, · · · , N − 1. (30)
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 Qc00 . . . Qc0(N−1)

...
. . .

...
Qc(N−1)0 . . . Qc(N−1)(N−1)

−

 CFc(0)
...

CFc(N − 1))

P−1
c

[
CFc(0)

T . . . CFc(N − 1)T
]
> 0. (27)

From the definitions of Λ and SD and the inequalities (29)
and (30), (22) is equivalent to the ∥Fj∥22 < γj . Thus, the
matrix inequalities constraint from (17) to (22) guarantees the
satisfaction of the inequalities (5), ∥Fj∥22 = α2∥H−1

j ∥22 ≤
γj , ∀j ∈ [0, N − 1]. 2

4. SOLUTION TO DESIGN PROBLEM

According to (6), H−1(z) = H†(z) + Ñ⊥(z)V (z). So the
seven state space parameter matrices of H−1(z) in the opti-
mization problem (17)-(22) are functions of H†(z), Ñ⊥(z)
and V (z), and a complete state space representation of
H−1(z) in terms of the state space realizations of H(z),
H†(z), Ñ⊥(z) and V (z) is needed for solving the optimiza-
tion problem.

Denote the minimal state space realizations of H(z),
H†(z), Ñ⊥(z) and V (z) as follows.

H(z) =

[
A B
C D

]
, (31)

H†(z) =

[
AH†c BH†c

CH†c DH†c

]
+

[
AH†ac BH†ac

CH†ac 0

]
ac

,

(32)

Ñ⊥(z) =

[
AÑ⊥

BÑ⊥

CÑ⊥
DÑ⊥

]
ac

, (33)

and

V (z) =

[
Av Bv

Cv Dv

]
ac

. (34)

Given the channel FB H(z), it is a routine to obtain its state
space realization (31). With (31), the state space realization
(32) for H†(z) can then be computed using the procedure
given in [7], and the state space realization (33) for Ñ⊥(z)
can be computed according to (8)-(14). The Av , Bv , Cv and
Dv in the state space realization (34) for V (z) are the param-
eter matrices to be searched in the optimization.

Note that by (8), Ñ⊥(z) has only anticausal part and so
is its state space realization in (33). From (6), H−1(z) =
H†(z)+ Ñ⊥(z)V (z), where H†(z) and Ñ⊥(z), according to
(7)-(14), are fixed for a given channel H(z) and only V (z) is
free for design. The dimension of V (z) is (N − M) × M ,
which is the dimension of freedom available for the design.
As H†(z) is generally noncausal, so should be V (z) in order
to make full use of the design freedom of V (z). However, if
V (z) contains a causal part, the product of Ñ⊥(z) and V (z)
would be associated with the Sylvester equation [15], which
makes the design problem (17)-(22) hard to solve by linear
matrix inequality (LMI) approach. To avoid this difficulty,
V (z) is restricted to be anticausal only in this paper.

Using (32)-(34) and Lemma 2, it is easy, after some op-
erations, to show that a complete state space representation
of H−1(z) in terms of the state space realizations of H(z),
H†(z), Ñ⊥(z) and V (z) is given by

H−1(z) =

[
AFc BFc

CFc DFc

]
+

[
AFac BFac

CFac 0

]
ac

=

[
AH†c BH†c

CH†c DH†c

]
+

AH†ac 0 0 BH†ac

0 AH†ac BÑ⊥
Cv BÑ⊥

Dv

0 0 Av Bv

CH†ac CH†ac DÑ⊥
Cv DÑ⊥

Dv


ac

,

(35)
where the Av, Bv, Cv and Dv for the state space realization
of V (z) are the parameter matrices to be searched in the op-
timization. Substituting (35) into (17)-(22) gives a convex
optimization subject to LMI constraints that can be solved by
Matlab LMI toolbox or similar convex optimization software
such as CVX.

5. NON-CAUSAL PRECODER IMPLEMENTATION

The anti-causal system cannot be processed in real-time, but
it can be implemented by block transmission. A possible
transmission scheme is to pack the source data of each input
into blocks, reverse the time indices of the blocks, and then
pass the blocks through the anticausal system. Although the
block transmission results in transmission delay, it makes
anti-causal implementation feasible. The unknown initial
condition may result in the inaccuracy of the anticausal part.
If the FB channel is FIR, the inaccuracy of the anticausal
output could be limited in finite data samples. The following
theorem gives the details

Theorem 3 For an FIR FB channel H(z) in block transmis-
sion, at most the first K reconstructed samples of each block
are affected by the unknown initial condition, where K is the
maximum order of the subband filters of H(z).

Proof: A noncausal ZF precoder F (z) can be written as the
sum of causal part and anti-causal part F (z) = Fc(z) +
Fac(z). Since precoder F (z) and channel model H(z) sat-
isfy the ZF condition, their product satisfy H(z)F (z) =
H(z)Fc(z) + H(z)Fac(z) = I Because of the causality of
H(z) and Fc(z), there is no initial condition problem for this
part. Due to the ZF condtion, the product of H(z) and anti-
causal part Fac(z) only generate the causal output. Suppose

H(z) and Fac(z) with state-space realization
[

A B
C D

]
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and
[

AFac BFac

CFac DFac

]
ac

, respectively. The causal product is

given by [15][
A B
C D

] [
Aac Bac

Cac Dac

]
ac

=

[
A AY Bac +BDac

C DDac + CY Bac

]
(36)

where Y is the solution of the Sylvester equation AY AFac −
Y + BCFac = 0. It can be seen from (36) that the product
H(z)Fac(z) has the same order as H(z). Thus, the distortion
caused by unknown initial condition are restricted to the first
K samples of each block since the maximum order of each
subband filter is K. 2

6. NUMERICAL EXAMPLE

Consider the redundant FIR FB channel with N = 3, M = 2
and polyphase matrix H(z) = [Hij(z)]i=1,2; j=1,2,3, where
H11 = 0.3467 + 0.6228z−1 + 0.7966z−2, H12 = 0.7459 +
0.1255z−1, H13 = 0.8224 + 0.0252z−1 + 0.4144z−2,
H21 = 0.7314 + 0.7814z−1 + 0.3673z−2, H22 = 0.7449 +
0.8923z−1, H23 = 0.2426 + 0.1296z−1. Assume the power
of input signal σ2

x = 1. The individual channel power con-
straints for three channels are 2, 2, and 2. The maximum
SNR coefficient αc achieved by the causal design [8] is
αc = 0.6288. By using Theorem 3, a noncausal precoder is
designed and it achieves αnc = 1.1462. The SNR is almost
doubled.

7. CONCLUSION

ZF precoder design with individual channel power constraints
has been investigated in this paper. A general state space rep-
resentation of all right inverses of the FB channel has been
presented and used to show that for the general (nonmini-
mum phase) FB channels, the optimal ZF precoder is non-
causal in general. The design of ZF precoder has been cast
into a constrained optimization problem, and the solution has
been obtained by converting the optimization problem into
that of a convex optimization subject to linear matrix con-
straints. The numerical example has demonstrated the effec-
tiveness and advantage of the obtained solution.
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