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ABSTRACT

This paper proposes novel robust speech F0 estimation using
SRH (Summation Residual Harmonics) based on TV-CAR
(Time-Varying Complex AR) analysis. We have already pro-
posed robust F0 estimation based on the TV-CAR analysis in
which weighted auto-correlation for complex residual signals
is used as the criterion. In the SRH method, the criterion is
calculated from LP residual signals. The criterion is summa-
tion of residual spectrum value for harmonics. In this paper,
we propose SRH-based F0 estimation based on the TV-CAR
analysis, in which the criterion is calculated from the complex
AR residual. Since complex AR residual provides higher res-
olution of spectrum, the criterion might be effective for F0 es-
timation. The experimental results demonstrate that the pro-
posed method performs better than conventional methods.

Index Terms— F0 estimation, Summation Residual Har-
monics (SRH), complex analysis, analytic signal

1. INTRODUCTION

F0 estimation has been focused on speech processing since its
performance decides performance of speech processing such
as speech coding, speech enhancement, and speech recogni-
tion. Classic F0 estimation including auto-correlation[1] or
Cepstral method[2] perform well for clean speech in ideal en-
vironment. Moreover, YIN[3] has been proposed and it is
being used in whole world due to its high accuracy. How-
ever these would not perform well for noisy speech in real
environment. For this reason, robust F0 estimation still re-
mains an unsolved and challenging problem. Several robust
algorithms have been proposed[4][5][6][7][8]. In [4], auto-
correlation function is weighted by a reciprocal of AMDF
(Average Magnitude Difference Function) so that the peaks
of auto-correlation are emphasized, as a result, it can sup-
press error estimation of F0. In [5], EMD (Empirical Mode
Decomposition) is applied to auto-correlation function and
the EMD-based auto-correlation makes it possible to estimate
more accurate F0. In [6], [7], the Zero Frequency Resonance
(ZFR) is introduced to realize more accurate F0 estimation.

In ZFR method, Hilbert Envelope (HE) for LP(Linear Predic-
tive) residual is computed. The HE is defined as magnitude
of the analytic signal and it accommodates relatively low fre-
quency components. Then, the pulse components of glottal
source are emphasized by Zero Frequency Filtering (ZFF) for
the HE and the trend removal. The output signal is ZFR sig-
nal of the HE. The ZFR signal is merely periodic signal and
accurate Glottal Closure Instance (GCI) can be estimated by
its positive zero-crossing. The auto-correlation for the ZFR
can improve the performance on F0 estimation. Moreover,
SRH(Summation Residual Harmonics)[8] focuses on resid-
ual harmonics. Power spectrum of LP residual presents peaks
at the harmonics of the F0. The SRH is calculated by using
the power spectrum. The SRH is summation of the harmon-
ics minus the half-harmonics. By peak-picking of the SRH in
certain range of F0, one can estimate the F0.

On the other hand, we have already proposed F0 estima-
tion based on time-varying complex AR (TV-CAR) speech
analysis[9][10][11]. In these methods the weighted auto-
correlation function is calculated by using complex residual
for analytic signal. Analytic signal is complex-valued signal
whose real part is observed real speech and whose imagi-
nary part is its Hilbert transform. The complex residual is
estimated by time-varying complex AR (TV-CAR) speech
analysis based on MMSE and ELS estimation[13], respec-
tively. In [10] it is reported that ELS-based method performs
better for speech corrupted by pink noise while in [9] it is re-
ported that MMSE-based method performs better for additive
white Gauss noise. [11] shows that the time-varying analysis
performs better for strong voiced segments. Moreover, the
ZFR-based F0 estimation based on the TV-CAR analysis has
been proposed and evaluated[12].

In this paper, SRH-based F0 estimation based on the TV-
CAR speech analysis is proposed and evaluated. The exper-
imental results demonstrate that the proposed method does
perform better than the conventional ones[3][4][8].

This paper is organized as follows. Section 2 describes the
TV-CAR speech analysis. In Section 3, the SRH method will
be explained. In Section 4, the proposed F0 estimation will
be explained. In Section 5, the experiments will be explained.
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2. TV-CAR SPEECH ANALYSIS

2.1. Analytic speech signal

Target signal of the time-varying complex AR (TV-CAR)
method is an analytic signal that is complex-valued signal
defined by

yc(t) =
y(2t) + j · yH(2t)√

2
(1)

where yc(t), y(t), and yH(t) denote an analytic signal at time
t, an observed signal at time t, and a Hilbert transformed sig-
nal for the observed signal, respectively. Notice that super-
script c denotes complex value in this paper. Since analytic
signals provide the spectra only over the range of (0,π), ana-
lytic signals can be decimated by a factor of two. 2t means the
decimation. The term of 1/

√
2 is multiplied in order to adjust

the power of an analytic signal with that of the observed one.

2.2. Time-varying complex AR (TV-CAR) model

Conventional LPC(Linear Predictive Coding) model is de-
fined by

YLPC(z−1) =
1

1 +
I∑

i=1

aiz
−i

(2)

where ai and I are i-th order LPC coefficient and LPC order,
respectively. Since the conventional LPC model cannot ex-
press the time-varying spectrum, LPC analysis cannot extract
the time-varying spectral features from speech signal. In or-
der to represent the time-varying features, the TV-CAR model
employs a complex basis expansion shown as

ac
i (t) =

L−1∑

l=0

gc
i,lf

c
l (t) (3)

where ac
i (t),L,gc

i,l and fc
l (t) are taken to be i-th complex AR

coefficient at time t, finite order of complex basis expansion,
complex parameter, and a complex-valued basis function, re-
spectively. By substituting Eq.(3) into Eq.(2), one can obtain
the following transfer function.

YTV CAR(z−1) =
1

1 +
I∑

i=1

L−1∑

l=0

gc
i,lf

c
l (t)z−i

(4)

where I is AR order. The input-output relation is defined as

yc(t) = −
I∑

i=1

ac
i (t)y

c(t − i) + uc(t)

= −
I∑

i=1

L−1∑

l=0

gc
i,lf

c
l (t)yc(t − i) + uc(t) (5)

where uc(t) and yc(t) are taken to be complex-valued in-
put and analytic speech signal, respectively. In the TV-
CAR model, the complex AR coefficient is modeled by a
finite number of arbitrary complex basis. Note that Eq.(3)
parametrizes the AR coefficient trajectories that continuously
change as a function of time so that the time-varying analysis
is feasible to estimate continuous time-varying speech spec-
trum. In addition, as mentioned above, the complex-valued
analysis facilitates accurate spectral estimation in the low
frequencies, as a result, this feature allows for more accurate
F0 estimation if formant structure is removed by the inverse
filtering. Eq.(5) can be represented by vector-matrix notation
as

ȳf = −Φ̄f θ̄ + ūf

θ̄T = [ḡT
0 , ḡT

1 , · · · , ḡT
l , · · · , ḡT

L−1]

ḡT
l = [gc

1,l, g
c
2,l, · · · , gc

i,l, · · · , gc
I,l]

ȳT
f = [yc(I), yc(I + 1), yc(I + 2), · · · , yc(N − 1)]

ūT
f = [uc(I), uc(I + 1), uc(I + 2), · · · , uc(N − 1)]

Φ̄f = [D̄f
0 , D̄f

1 , · · · , D̄f
l , · · · , D̄f

L−1]

D̄f
l = [d̄f

1,l, · · · , d̄f
i,l, · · · , d̄f

I,l]

d̄f
i,l = [yc(I − i)fc

l (I), yc(I + 1 − i)fc
l (I + 1),

· · · , yc(N − 1 − i)fc
l (N − 1)]T

(6)

where N is analysis interval, ȳf is (N − I, 1) column vec-
tor whose elements are analytic speech signal, θ̄ is (L · I, 1)
column vector whose elements are complex parameters, Φ̄f

is (N − I, L · I) matrix whose elements are weighted analytic
speech signal by the complex basis. Superscript T denotes
transposition.

2.3. MMSE-based algorithm[13]

MSE criterion is defined by

r̄f = [rc(I), rc(I + 1), · · · , rc(N − 1)]T

= ȳf + Φ̄f θ̂ (7)

rc(t) = yc(t) +
I∑

i=1

L−1∑

l=0

ĝc
i,lf

c
l (t)yc(t − i) (8)

E = r̄H
f r̄f = (ȳf + Φ̄θ̂)H(ȳf + Φ̄θ̂) (9)

where ĝc
i,l is the estimated complex parameter, rc(t) is an

equation error, or complex AR residual and E is Mean
Squared Error (MSE) for the equation error. To obtain
optimal complex AR coefficients, we minimize the MSE
criterion. Minimizing the MSE criterion of Eq.(9) with re-
spect to the complex parameter leads to the following MMSE
algorithm.

(Φ̄H
f Φ̄f )θ̂ = −Φ̄H

f ȳf (10)
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Superscript H denotes Hermitian transposition. After solving
the linear equation of Eq.(10), we can get the complex AR
parameter (ac

i (t)) at time t by calculating the Eq.(3) with the
estimated complex parameter ĝc

i,l.

3. SRH[8]

The SRH relies on harmonics of LP residual power spectrum
that provides less spectrum except F0. It accounts for effect
of not only harmonics but also half-harmonics. The procedure
is as follows.

(1)LPC analysis is operated with observed speech signal.
(2)LPC inverse filter is operated with the speech signal to
obtain the LP residual.
(3)Power spectrum of the LP residual E(f) is calculated by
using FFT.
(4)The SRH is calculated by Eq.(11).
(5)F0 is estimated by searching maximum value for
SRH(f) in certain range of F0, [F0min, F0max].

SRH(f) = E(f) +
Nharm∑

k=2

[E(k · f) − E((k − 1
2
) · f)] (11)

The function of SRH(f) is summation of the amplitude
corresponding to the harmonics minus that to half-harmonics.
The function is not only to emphasize the harmonic elements
but also to deemphasize the half-harmonic elements. In [8],
two-stage estimation is introduced to avoid estimation error
of F0. In first-stage, average F0 is estimated. It is denoted
as F0mean. In second stage, F0 is estimated by search-
ing maximum value for SRH(f) in limited range of F0,
[F0mean/2, F0mean ∗ 2].

The SRH can be also used for voicing decision by simple
local threshoulding. It is important to be noted that SRH
searches F0 in the frequency domain. Consequently, the
complex analysis can improve the performance since com-
plex analysis can improve the spectral resolution due to the
nature of analytic signal.

4. PROPOSED F0 ESTIMATION

Auto-correlation function (AUTOC) is defined by

f(τ) =
1
N

N−1∑

t=0

x(t)x(t + τ) (12)

where x(t) is target signal such as speech signal, LPC residual
or so on, N is frame length and τ means delay. F0 is selected
as peak frequency for Eq.(12) within certain range of F0.

AMDF is defined as follows.

p(τ) =
1
N

N−1∑

t=0

|x(t) − x(t + τ)| (13)

F0 is selected as notch frequency for Eq.(13) within certain
range of F0.

In Shimamura method [4], the AUTOC is weighted by a
reciprocal of the AMDF shown as Eq.(14). Since the weight-
ing makes it possible to suppress other peaks, the method can
estimate more accurate F0 than AUTOC or AMDF. The value
of m is set to be 1 in order to avoid the value of 0 at the de-
nominator.

G(τ) =
f(τ)

p(τ) + m
(14)

where f(τ) and p(τ) are AUTOC shown as in Eq.(12) and
AMDF shown as in Eq.(13), respectively.

In our F0 estimation[9][10][11], the weighted auto-
correlation for complex AR residual is used as the crite-
rion. Needless to say, in SRH method[8], the SRH shown as
Eq.(11) is calculated using LP residual to estimate F0. In the
proposed method, the SRH shown as Eq.(11) is calculated
using complex AR residual shown as Eq.(7) to estimate F0.

The procedure is summarized as follows.

(1)The complex AR residual is computed by Eq.(7) using the
TV-CAR analysis for analytic signal.
(2)The power spectrum E(f) is computed for the complex
AR residual.
(3)The SRH is computed by Eq.(11).
(4)F0 search is carried out by peak-picking for the criterion
SRH.

The E(f) is non-symmetric one-size spectrum and the
resolution is twice larger than that for real-valued analysis.
It allows for better performance on the estimation. Note
that F0mean is set by the estimated F0 using Shimamura
method[4] in which speech signal is used to calculate the
criterion shown as Eq.(14).

5. EXPERIMENTS

In order to compare the performance, the experiments were
carried out with Keele Pitch Database[14] corrupted by white
Gauss or Pink noise[15] whose noise level was -5, 0, 5, 10,
20, 30[dB]. The noise corrupted speech is filtered by the
IRS filter[16] for speech coding application. The proposed
method was compared with conventional methods as follows.

(1) Weighted auto-correlation for Speech signal[4]
(2) SRH of time-varying real LP residual
(3) SRH of time-invariant complex AR residual
(4) SRH of time-varying complex AR residual

Experimental conditions are summarized in Table 1. AR or-
der I is 14 for real analysis, 7 for complex analysis. Basis
expansion order L is 2 and first order polynomial (1, t) is se-
lected as a basis function. The performance is evaluated by
using 10 % of GPE (Gross Pitch Error) and FPE (Fine Pitch
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Error). Figures 1 and 2 show the GPEs and FPEs correspond-
ing each method in which black line with black square means
GPEs/FPEs for method (1), black line with black diamond
means GPEs/FPEs for method (2), red line means GPEs/FPEs
for method (3) and blue line means GPEs/FPEs for proposed
method (4). Figures 1 and 2 demonstrate that the SRH for LP
residual and complex AR residual perform better than Shima-
mura method[4] in terms of GPE as well as FPE. Moreover,
the proposed method can perform better than time-invariant
complex-valued residual and real-valued residual in terms of
GPE as well as FPE. The reason why the SRH based on com-
plex AR residual perform better is that spectrum resolution
is improved due to the nature of analytic signal. The reason
why there is a little difference between time-varying and time-
invariant speech analysis is that power spectrum is calculated
over several pitch periods to compute the SRH, as a result,
time-varying analysis cannot always be effective. Figures 3
and 4 show the results for proposed method and YIN[3]. The
proposed method performs better than YIN in terms of GPE.

Table 1: Experimental conditions
Speech data Keele Pitch database [14]

Male 5 long sentences
Female 5 long sentences

IRS filter 64-th FIR
Sampling 10kHz/16bit
Analysis window Window Length: 25.6[ms]

Shift Length: 10.0[ms]
F0 search range 50 − 400[Hz]
Complex-valued AR I=7, L=2 (time-varying)
Target signal complex AR residual
Real-valued AR I=14, L=2 (time-varying)
Target signal real AR residual
Noise (1)white Gauss noise

(2)pink noise[15]
Noise Level 30,20,10,5,0,-5[dB]
SRH Nharm = 5

6. CONCLUSIONS

This paper has proposed the SRH-based F0 estimation using
the TV-CAR speech analysis. The SRH is summation of har-
monics minus half-harmonics for complex AR residual cal-
culated by the TV-CAR speech analysis. The performance
comparison was carried out using five kinds of methods. The
experimental results demonstrate that the proposed TV-CAR
residual-based SRH performs best. As a future work, we are
going to propose the SRH voicing detection based on the TV-
CAR analysis and to evaluate it.
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Figure 1: Experimental results (Gaussian noise)
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Figure 3: Experimental results (Gaussian noise)
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Figure 2: Experimental results (Pink noise)

 30  20  10   5   0  −5
10

20

30

40

50

60

70

GP
E[

%]

noise level[dB]

 

 
YIN
C_SRH
TVC_SRH

(1)GPEs for additive pink noise

 30  20  10   5   0  −5
2.4

2.6

2.8

3

3.2

3.4

3.6

FP
E[

Hz
]

noise level[dB]

 

 
YIN
C_SRH
TVC_SRH

(2)FPEs for additive pink noise
Figure 4: Experimental results (Pink noise)
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