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ABSTRACT

This work presents acoustic model adaptation based on a
piece-wise energy decay curve. The dual slope representa-
tion of the piece-wise curve accurately captures the early
and late reflection decay which helps in precisely modeling
the smearing effect caused due to reverberation. Adaptation
using piece-wise decay curve leads to robust acoustic models
consequently improving the recognition performance. The
approach is tested on connected digits recognition task in
different rooms with various reverberation times. The perfor-
mance is compared with the exponential decay approach and
incremental MLLR, where the proposed approach was more
effective. Moreover, the combination of piece-wise adaptation
with incremental MLLR is also studied and the combination
is instrumental in improving the performance with respect to
incremental MLLR.

Index Terms— reverberation, robust speech recognition,
acoustic model adaptation

1. INTRODUCTION

Current automatic speech recognition (ASR) systems perform
very well in close talking scenario but their performance de-
creases drastically in hands-free scenario due to noise and re-
verberation. Even though many effective techniques have be-
en proposed to tackle additive noise [1], the problem of re-
verberation remained relatively neglected. Reverberation is a
natural acoustic phenomenon caused due to the reflections of
the original signal from the walls and objects in the room. To
reduce the detrimental effects of reverberation various techni-
ques are used which can broadly be classified as signal, fea-
ture and model based techniques.

Signal based techniques [2] mostly focus on improving
the perceptual quality of the signal by maximizing the signal
to noise ratio (SNR) whereas feature based techniques [3] ex-
tract robust features from the speech which are immune to
the effects of the environment. Nevertheless, these techniques
are successful in partially alleviating the effects of convolu-
tion distortions but for large reverberation times they provi-
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de limited gains. Model based techniques like Maximum a-
posteriori (MAP) [4], Maximum likelihood linear regression
(MLLR) [5] and Constrained maximum likelihood linear re-
gression (CMLLR) [6] aim to reduce the mismatch between
training and testing conditions by adapting the models using
some data from the target environment. Although, they have
shown quite improved performance against the noise and re-
verberation, for higher reverberation times the gains are mea-
ger due to the conditional independence assumption of the
hidden Markov models (HMM).

Recently [7, 8, 9] have attempted to overcome the con-
ditional independence of HMMs. The basic idea in [7, 8] is
to estimate the reverberation effects in the preceding frames
and add it to the current frame, whereas in [9], the reverbera-
tion effects are estimated from the previous states and added
to the current state. Moreover, these techniques also differ in
the reverberation model and the estimation procedure being
used to approximate the reverberation effect. In [7], the spec-
tral distortion and the reflection coefficients of the previous
frames model the reverberation effects, whereas in [8], on-
ly the reflection coefficients of the previous frames are used;
while in [9], the exponential energy decay curve (Exp-EDC)
which represents the energy decay in the room impulse re-
sponse (RIR) is used. Among these techniques, [9] is closest
to the work presented in this paper as it is a blind adaptati-
on procedure and we are interested in studying the adaptation
when no information or very little information is available.

The adaptation in [9] is based on the Exp-EDC which ass-
umes a monotonous energy decay in the channel. However, in
[10] it is shown that the EDC has dual slope representing the
early and late reflections decays. Therefore, in this work we
use a better model for creating the piece-wise energy decay
curve (Pw-EDC) which approximates the decay of both re-
flections in a precise way. Clean models are adapted by using
the Pw-EDC and tested under different rooms with several
different reverberation times (T60). Moreover, the combina-
tion of piece-wise adaptation with unsupervised MLLR com-
monly referred to as incremental MLLR (IMLLR) is also stu-
died.

The organization of the paper is as follows: Section 2, re-



views the approach presented in [9]. Section 3 presents the
proposed approach. Section 4 provides the details of the ex-
perimental setup and the experimental results are discussed in
Section 5. In Section 6, the summary and the future work are
presented.

2. ADAPTATION USING EXPONENTIAL ENERGY
DECAY CURVE

In a HMM, the acoustic excitation described by the parame-
ters of a single state could be seen in the succeeding states
with some attenuation. In a reverberant scenario, this attenua-
tion can be observed even in the succeeding models. In [9],
this decay of acoustic excitation is modeled by the EDC deri-
ved as -

R2(t) ~ e Tt 1)
where h(t) is the RIR.

In order to estimate this curve, only T60 is needed which
is estimated using a maximum likelihood method. To estimate
the reverberation contribution in each state, first the average
duration of each state is derived as
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for all states S;, where P(S; | S;) is the transition probabili-
ty to remain in state .S; and t4p, r¢ is the frame shifting time.
Then the reverberation contribution «; of each state is estima-
ted by integrating the squared RIR over the time segment of
each state as
te(S;)
iy = / h?(t)dt 3)
t5(Ss)
where ts and t. are starting and ending times of each state
respectively.

The adaptation of the energy parameter and the Mel-
frequency cepstral features (MCCs) of the current state can
be performed by adding the reverberation contributions of the
preceding states to the current state. Since the adaptation is
defined in the Mel-spectral domain, the cepstral coefficients
are transformed back to the Mel-spectral domain and then the
adaptation is performed as

E(S;) = Zai,j - B(S;)

X5 (S)? = Z@i,j | X (S))[? “)
=1

where k is the filter bank index and X, is the clean power
density spectra and F is the clean energy parameter; similar-
ly Xy, and E are the adapted spectra and the adapted energy
parameter respectively. After the adaptation, the spectral pa-
rameters are again transformed to MFCCs. For more details
refer to [9].

366

——EDC
s == Exp-EDC
0.8f\* Pw—EDC
\
s
AY
0.6F N
N\‘_‘/
=
041
02f ~
~o
0 L i T .
50 100 150 200 250 300

Time(ms)

Fig. 1. Comparing energy decay curve of the office room RIR
having T60 ~ 500ms with exponential and piece-wise energy
decay curves of T60=500ms

2.1. Limitations of the exponential adaptation

In the exponential adaptation approach, the Exp-EDC descri-
bes the energy decay in the channel using a single and mo-
notonous decay. However, according to [10] the reverberant
energy decays in two phases; in the initial phase it decays
sharply due to high energy sparse reflections while in the la-
ter phase the energy decays smoothly due to the low energy
dense reflections. This effect is illustrated in figure 1 which
shows the normalized EDC of the RIR captured in an office
room and Exp-EDC estimated using equation (1) both having
T60 of 500 ms. It is evident, the Exp-EDC is not able to ap-
proximate the initial and some later part of the RIR’s EDC
consequently leading to overestimation of the reverberation
contribution in the states. Hence, to capture accurate represen-
tation of the reverberation it is necessary to model the EDC
with dual slope.

In the exponential adaptation approach, T60 plays a fun-
damental role because the Exp-EDC is created using it. Ho-
wever, it is estimated by force matching the adapted models
with the feature vectors using a maximum likelihood criteria
and it has been reported in [9] that the estimated T60 values
vary a lot. Therefore, in a preliminary investigation we have
also estimated the T60 using the same procedure and found
that most of the estimated values are much smaller than the
actual T60 of the environment. Hence, to remove this anoma-
ly in our experiments we have used the actual T60 of the envi-
ronment instead of depending upon the inaccurately estimated
values.

3. ADAPTATION USING PIECE-WISE ENERGY
DECAY CURVE

In order to model the Pw-EDC, the boundaries of early and
late reflections need to be defined. However, in the literature,
there are no definite boundaries defined for them. According
to [11], the reflections between 50 ms after the arrival of the



direct sound and when the sound pressure level drops below
40dB have the most detrimental effect on ASR accuracy. Mo-
reover, [ 12] has reported that the late reflections which occurs
between 100 ms and 300 ms after the direct signal are the
most harmful for classification accuracy. Therefore, in our ex-
periments we have chosen 50 ms after the arrival of the direct
sound as the early reflection time and the reflections arriving
after this are considered as the late reflections. Using these
boundaries we have modeled the Pw-EDC curve as follows:
The initial part of the Pw-EDC is modeled by the combination
of linear and power function derived as

filt)y=m-t+c &)
where m is the slope and c is y the intercept, and

fp(t) =1° (6)

where a is the power exponent. The parameters of these func-
tions are empirically computed. As the later part in EDC was
fairly approximated by equation (1), we have retained the sa-
me modeling in our approach for the late reflections decay.
The only parameter needed to create the late reflection decay
curve is T60 which is already known.

_6in(10)

fe (t) ~ e  Teo 7
The piece wise curve can then be derived as

F@t) = filt) - frt) 0<t<T
= fe(t) t>T ®)

where T is 50 ms . Figure 1 compares various energy decay
curves where the Pw-EDC having early reflection boundary
as 50 ms is displayed. It is apparent from the figure 1, the Pw-
EDC models the early and late reflections more accurately
than the simple Exp-EDC.

4. EXPERIMENTAL SETUP

To evaluate the proposed method, the reverberant data is gene-
rated for office and living rooms with the reverberation times
ranging from 200 to 900 ms. The RIR for each room is ob-
tained from the web interface of SIREAC tool [13]. This tool
provides several options to modify the RIR in terms of selec-
ting rooms and reverberation time. First, the clean corpus is
obtained after down sampling the TIDIGITS corpus [14] to
8 kHz, then the reverberant corpora is created by convolving
the RIRs with clean signals. In this manner, we have created 8
sets of reverberant corpora corresponding to the T60 of 200,
300, ..., 900 ms for each room.

The features are calculated by pre-emphasizing the signal
with a factor of 0.95. The short segments of speech are extrac-
ted using a hamming window of 25 ms with a frame shift of 10
ms. Spectral analysis on frames is performed with 256 point

367

T60

Estimate
Pw-EDC

Estimate reverberation
contributions in each

HMMs state

Transform HMMs
to Mel—spectral
domain

|

Adaptaion of
HMM parameters

|

Transform to
cepstral domain

Adapted
HMMs
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DFT (Discrete Fourier Transform). Mel-spectrum is calcula-
ted by applying a Mel-filter bank having 24 band-pass filters
in the range from 200 Hz to 4000 Hz on the DFT spectrum.
MFCCs are obtained from the log mel-spectrum by applying
DCT (Discrete Cosine Transform). In our experiments, zeroth
cepstral coefficient (CO) is needed only for transforming the
cepstral coefficients to the spectral domain during adaptati-
on. For recognition, static coefficients with energy parameter
augmented with delta coefficients are used.

The word models consists of 16 emitting states and 4
Gaussian mixtures per state which represents the digits whe-
reas silence model has 3 states with 4 Gaussian mixtures per
state. Training and testing of the models are performed on
HTK toolkit [15] by using the whole corpus. In this contribu-
tion, only the static coefficients of the means are adapted. The
clean models are adapted with the fixed T60 value using the
exponential and piece-wise adaptation method. The adapted
models are then used for recognition.

Figure 2 presents the piece-wise adaptation method. In-
itially, the Pw-EDC is estimated as described in section 3.
Then the duration of each state is calculated from the transi-
tion probabilities of clean models. Reverberation contributi-
ons are estimated by integrating the Pw-EDC for each state
duration. Adaptation of the clean models is performed by ad-
ding the reverberation contributions of the previous states to
the current state as described in [9]. After the adaptation, the
models are transformed back to the cepstral domain thus ob-
taining the Pw-EDC adapted models.

5. EXPERIMENTAL RESULTS

In order to test the efficacy of our approach extensive experi-
ments are performed using connected digit setup. Initially, the
influence of T60 is assessed and then we compare the perfor-
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Fig. 3. Influence of T60 over the exponetial and piece-wise
adaptation techniques

mance of exponential and piece-wise adaptation with IMLLR.
Finally, the combination of piecewise adaptation and IMLLR
is studied.

5.1. Influence of reverberation time

Generally, T60 is estimated from the RIR but many techni-
ques have also been proposed to estimate it blindly from the
signals. However, the blind estimation techniques does not
provide the exact T60 values . In this scenario, we have in-
vestigated the robustness of the exponential and piece-wise
adaptation when an incorrect T60 value is provided to the al-
gorithm.

Initially, the T60 values are sampled in the steps of 50 ms
starting from 50 ms till 1000 ms. The clean models are ad-
apted using these T60 values by exponential and piece-wise
adaptation. The resulting models are then tested on the rever-
berant corpora. Figure 3 shows the results of this experiment
for only two cases of living room where the T60 is 300 and
600 ms respectively. From the results, it is evident that ex-
ponential adaptation is very sensitive to the choice of T60.
For lower T60 it gives the best results whereas for higher T60
due to the over-estimation of reverberant contributions the ad-
aptation is performed incorrectly, hence the word error rates
(WER) are always higher than the unmatched results. Similar
trend is observed for all the T60 values across both the rooms.
Moreover, the best results in the case of exponential adapta-
tion is obtained at a value other than the original T60 of the
channel.

In the case of piece-wise adaptation, due to the precise
modeling of energy decay the technique shows decrease in the
WER, thus providing robustness against incorrect estimation
of T60. However, when there is a large difference between the
T60 of the channel and the T60 used for adaptation it shows
a small increase in WER indicating the incorrect T60 values.
The most interesting aspect of this technique is it provides the
best results at the same T60 value as of the channel. Similar
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Fig. 4. Comparison of exponential and piece-wise adaptation
with IMLLR

trend has been observed for all the reverberation times across
both the rooms.

5.2. Comparison with standard adaptation technique

The aim here is to study the adaptation when no informati-
on or some information about the environment is available
like T60. Therefore, we have chosen to compare our techni-
que with IMLLR . Initially, clean models are adapted using
IMLLR, exponential and piecewise adaptation techniques.
The IMLLR adapation is performed after each utterance
using a global transform. For exponential and piecewise
adaptation T60 values are provided. Other parameters for
piecewise adaptation are empirically determined. The results
of this experiment for both rooms are shown in figure 4.

In the office room scenario, at lower T60s the relative
gains due to adaptation is meager for all the techniques. Mo-
reover, as the reverberation time increases the exponential ad-
aptation is showing worse performance than the unmatched
case. Nonetheless, the robustness of piece-wise adaptation is
clearly visible particularly for higher T60 values where even
IMLLR is showing dismal performance.

In the living room scenario, the trend at lower T60s is
similar to the office room but at higher reverberation times
piece-wise adaptation outperforms other techniques. Finally,
the piece-wise adaptation due to the accurate modeling of the
reverberation effects has shown to be robust and consistent
across both the rooms particularly at higher T60s.

5.3. Combination of adaptation techniques

In order to obtain robust models, multiple adaptations tech-
niques could be used for example the combination of MLLR
and MAP adaptation is well known. Therefore, we have att-
empted to study the combination of IMLLR with exponential
and piece-wise adaptation. In the previous section, it has been
observed that IMLLR is not particulary effective in large T60
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scenario. Therefore, our aim is to improve the IMLLR per-
formance by first adapting the models using exponential or
piecewise adaptation and then performing IMLLR over these
models.

Figure 5 presents the results of this study. The combina-
tion of exponential and IMLLR adaptation ( Exp-IMLLR )
is not beneficial except at lower reverberation times because
the exponential adaptation has already adapted the models in
an incorrect way. As a result, the prior adaptation is not hel-
pful in creating accurate transforms. However, in the low re-
verberation scenario when the exponential adaptation is sho-
wing some improved performance, the IMLLR is benefited
from the exponential adaptation and the WERs are reduced.
For the piece-wise and IMLLR adaptation (Pw-Exp-IMLLR),
IMLLR is benefited due to the piece-wise adaptation in all the
cases across both the rooms.

6. SUMMARY AND FUTURE WORK

This paper has presented an improved acoustic model adapta-
tion technique for reverberant environments. The adaptation
is performed by using a Pw-EDC which accurately models
the early and late reflections decay in a channel. Connected
digits recognition experiments have been performed in diffe-
rent rooms for various reverberation times and the results are
compared with the approach in [9] and IMLLR. The results
obtained are significantly better than the exponential model
and IMLLR. Finally, the combination of IMLLR with ex-
ponential and piece-wise adaptation is also studied and it is
found that piece-wise adaptation helps in improving IMLLR
performance. In the future, we would like to address the issue
of estimation of the parameters for creating the Pw-EDC. A
possible approach could be to use some amount of reverbe-
rant data. Moreover, to increase the robustness and applica-
bility to real scenarios we would like to extend the approach
by incorporating noise modeling and adapting the dynamic
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coefficients (i.e first and second order coefficients).
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