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ABSTRACT

Heuristic search has recently been utilized for compressed

sensing signal recovery problem by the A* Orthogonal

Matching Pursuit (A*OMP) algorithm. A*OMP employs

A* search on a tree with an OMP-based evaluation of the

branches, where the search is terminated when the desired

path length is achieved. The algorithm employs effective

pruning techniques and cost models which make the tree

search practical. Here, we propose two important extensions

of A*OMP: We first introduce a novel dynamic cost model

that reduces the search time. Second, we modify the termi-

nation criterion by stopping the search when ℓ2 norm of the

residue is small enough. Following the restricted isometry

property, this termination criterion is more appropriate for

our purposes. We demonstrate the improvements in terms

of both reconstruction accuracy and computation times via a

wide range of simulations.

Index Terms— Compressed sensing, A*OMP, A* termi-

nation criterion, A* auxiliary functions

1. INTRODUCTION

The fundamental problem of Compressed Sensing (CS) signal

recovery is solving the minimization problem

x = argmin ‖x‖0 s.t. y = Φx, (1)

where x is a K-sparse signal of length N , Φ is the observa-

tion matrix, also called the dictionary, of size M×N and y

is the observation of length M where M < N . Many re-

construction algorithms have been suggested for solving (1),

whose direct solution is intractable. These can be broadly cat-

egorized as [1] convex relaxation, greedy pursuits, Bayesian

framework and nonconvex optimization.

Starting historically with Basis Pursuit (BP) [2], convex

relaxation [3, 4, 5, 6] replaces the l0 minimization in (1) with

l1 minimization, which can be solved via linear program-

ming. Greedy pursuit algorithms such as Orthogonal Match-

ing Pursuit (OMP) [7], Compressive Sampling Matching Pur-

suit (CoSaMP) [8] and Subspace Pursuit (SP) [9] employ iter-

ative mechanisms which find approximate solutions by solv-

ing a stagewise constrained residue minimization problem.

The authors recently suggested a semi-greedy approach,

A* Orthogonal Matching Pursuit (A*OMP) [10, 11]. This

method solves the CS reconstruction problem with A* search

[12, 13], on a tree whose branches are evaluated similar to

OMP. Via pruning techniques and appropriate cost models,

A*OMP was shown to improve the reconstruction signifi-

cantly in many scenarios [10]. Note that A*OMP does not

exploit any tree-based structured sparsity, as, for example,

tree-based OMP [14] does, but covers all possible sparse rep-

resentations. It is a general recovery algorithm that can be

directly compared to algorithms such as to BP, OMP and SP.

In this work, we develop a modified version of the

A*OMP algorithm, the AMul-A*OMPe, that not only im-

proves the reconstruction rates significantly over [10], but

also effectively shortens the run time of the search. First, we

define a novel dynamical cost model, namely the adaptive-

multiplicative (AMul) cost model, that allows faster search

without sacrificing the accuracy via relaxing the cost model

parameter. As a result of relaxing the cost model parame-

ter, the search is able to find the solution by opening fewer

nodes and terminates faster. Second, we employ a termina-

tion criterion based on the residue of the observed vector,

instead of the length-based termination criterion of A*OMP

in [10]. Such a termination criterion is sometimes applied for

OMP-type algorithms, however it appears for the first time in

the concept of A*OMP. Moreover, most works in literature

does not make a clear distinction of the termination criteria.

However, this choice significantly affects the performance

of OMP-type algorithms. In fact, residue-based termination

is more appropriate for OMP-type CS recovery, as it is ac-

tually more accorded with the Restricted Isometry Property

(RIP) [3, 15]. We discuss this issue in Section 4 for A*OMP,

while our conclusions hold also for OMP. This is also justi-

fied via the recovery experiments, where the residue-based

termination criterion improves the recovery for both OMP

and A*OMP. The simulations involving sparse signals with

different nonzero coefficient distributions in noiseless and

noisy observation scenarios demonstrate the improved re-

construction capability of the AMul-A*OMPe in shorter run

times.

Section 2 provides a brief summary of the A*OMP ap-

proach, referring the reader to [10] for details. In Section 3,

the novel AMul cost model is introduced. We discuss the
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residue-based termination criterion in Section 4. Finally, Sec-

tion 5 demonstrates the empirical recovery performance of

AMul-A*OMPe in a range of simulations. We conclude with

a short summary in Section 6.

2. A*OMP IN SHORT

A*OMP is an iterative approach that operates on a best-first

search tree. The search tree is represented by the set S =
{si}, where si are the paths (branches of the tree). Nodes of

the tree represent dictionary atoms, and each si is a collec-

tion of atoms, which represent a candidate support for x. The

corresponding coefficients, ci, are obtained by the orthogonal

projection of y onto the support si. The approximation of y

by the path si is given by ŷi = sici, where the notation si
is abused to represent the matrix consisting of the atoms in-

cluded in the particular path i. The residue of si is defined as

ri = y − ŷi. Each si is also assigned a cost F (si), which is

computed using ‖ri‖2.

Let’s now summarize A*OMP as proposed in [10]:

A*OMP is initialized with I candidate paths, each consisting

of a single node. These I nodes are selected as the dictionary

atoms which have the highest inner-product with y. At each

iteration, the algorithm first selects the best path sb among S

with the minimum cost criterion. After sb selected, A*OMP

finds the B dictionary atoms that have the highest inner-

product with rb, and creates B candidate paths by expanding

sb with each of these individually. Each candidate path is

added to the tree if it has not been considered in previous

iterations. For each new si, ri is computed by orthogonal

projection of y onto si. Finally, the search tree is pruned such

that only the best P paths (with minimum cost) remain at the

end of the iteration. Following [10], the search is terminated

when the best path Sb has the desired length K. We refer to

this version as A*OMPK .

3. A NOVEL ADAPTIVE-MULTIPLICATIVE COST

FUNCTION FOR A*OMP

The cost function of A*OMP plays a major role in selection

of the best path at each iteration. In best-first search, selec-

tion of the best path requires comparison of paths with dif-

ferent lengths, which necessitates an auxiliary cost function

[12, 13]. For this purpose, [10] introduces three different

structures, additive, adaptive and multiplicative (Mul) mod-

els. Here, we introduce another novel dynamic cost model,

which is based on the multiplicative one.

In [10], the Mul cost model is defined as

FMul(S
l

i
) = αK−l

Mul

∥

∥rl
i

∥

∥

2
(2)

where the superscripts in Sl

i
and rl

i
denote the path length and

αMul is a constant in (0, 1]. According to this model, each

unexplored node is assumed to decrease the
∥

∥rl
i

∥

∥

2
by a con-

stant rate αMul, hence total degradation is modeled by the term

αK−l

Mul .

In [10], we have observed that the adaptive cost model

performs better recovery than its nonadaptive counterpart, the

adaptive cost model. Inspired by this observation, we define a

novel adaptive extension of the multiplicative cost model, in

which the decrement in
∥
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is governed by the decrement

obtained via the addition of the latest node to Sl

i
:
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where rl−1

i
is the residue after the first l−1 nodes in path Sl

i

and αAMul is a constant in (0, 1] as above. We refer to this

model as adaptive-multiplicative (AMul), and the correspond-

ing version of A*OMPe as AMul-A*OMPe.

In the AMul cost model, each unexplored node is assumed

to decrease
∥
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2
by the rate αAMul
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/
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2
. This is

justified by the following discussion: In general, we expect

the search to select nodes in a descending order with respect

to their inner-products with y (or similarly with respect to

the corresponding nonzero values of x). Hence, a node is

expected to yield less degradation in
∥

∥rl
i

∥

∥

2
than its ancestors

do. The term ‖rl
i
‖2/‖r

l−1

i
‖2 represents this degradation, and

αAMul is a relaxation factor less than 1. Accumulation of this

effect over all missing nodes finally leads to the power K−l.
Similar to other cost models given in [10], this assumption is

also valid on average, i.e. any particular sequence of nodes

may violate this, however, we expect it to hold in general and

lead the search to the correct solution.

The simulations in Section 5 indicate that AMul cost

model makes it possible to select α closer to 1 than Mul cost

model allows. Increasing α reduces the effect of unopened

nodes on the cost function and makes the search favor longer

paths. As a result, the search opens fewer nodes and termi-

nates faster. The simulation results in Section 5 demonstrate

the efficiency of AMul cost model. These indicate that the

AMul model not only provides better reconstruction than BP,

SP and OMP but also terminates faster than the Mul cost

model.

4. RESIDUE-BASED TERMINATION CRITERION

FOR A*OMP

As defined in [10], A*OMPK returns the first sb with length

K. An alternative is terminating the search when sb satisfies

‖rb‖2 ≤ ε‖y‖2, i.e. the residue falls below a threshold. We

refer to this variant A*OMPe. ε is selected with respect to the

noise level in a noisy problem, or very small in a noiseless

scenario. A*OMPe is free to select more than K nodes on a

path, up to a practical limit Kmax > K. (That is, even if an

sb with Kmax nodes does not satisfy the termination criterion,

the search is terminated.) Kmax might be selected with respect

1450



to the number of observations M . In this work, we set it as

M/2, while, in practice, this bound is only reached when the

reconstruction fails.

A*OMPe has some solid advantages over A*OMPK :

First, no a priori knowledge of K is necessary. This is ben-

eficial when we either do not know K, or K is dynamically

varying. Second, in case an sb with length K does not sat-

isfy the criterion ‖rb‖2 > ε‖y‖2, A*OMPe still continues

searching for another, possibly longer, path that fulfills the

this criterion. In other words, in cases A*OMPK fails, i.e.

it returns a path of length K with some nonzero residue,

A*OMPe still has the chance to find the correct path, as

the search is not stopped at the first suboptimal point. This,

as empirically shown in Section 5, improves the recovery

accuracy.

That A*OMPe can, and indeed in practice frequently

does, return a path longer than the actual sparsity level K
may at first sound as if the recovery fails, however this is not

true. This can be simply understood by a simple consequence

of the RIP. Assume that we deal with noise-free observations,

and set ε = 0 accordingly. If the search can find a path, say

sb, with vanishing residue, i.e. ‖rb‖2 = 0, and the dictionary

Φ satisfies the (K+Kmax)-RIP, then sb is ensured to be the

correct solution. (Remember that the actual sparsity level is

K, and the length of sb is upper bounded at Kmax, hence

(K+Kmax)-RIP is sufficient.) That is, sb consists of T , the

correct support of x and some additional atoms, sb\T . Fol-

lowing (K+Kmax)-RIP, the orthogonal projection of y onto

the subspace sb correctly identifies the nonzero entries in the

correct support T , while setting other entries corresponding

to the set sb\T to 0. Hence, that the returned path is longer

than K does not indicate a recovery failure. In contrast, as the

residue-based termination is the actual one in accordance with

the RIP, it is more optimal than the length-based termination

criterion.

Another advantage over A*OMPK follows from the fol-

lowing corollary: A*OMPe can cope with some additional

misidentified nodes as these do not harm the recovery when

the correct support is a subset of the final solution and a

certain RIP is satisfied. That is, A*OMPe can correct for

misidentified nodes in later stages.As we can afford addition

of some misidentified components to the solution, we can

relax the auxiliary function parameter α, decreasing the com-

petence of shorter paths. This reduces the computation times

without sacrificing reconstruction accuracy (see Section 5).

5. EXPERIMENTAL RESULTS

In this section, the recovery performance of A*OMPe is

demonstrated in comparison to A*OMPK , BP, SP and OMP

in noiseless and noisy scenarios. We utilize the AMul and

Mul cost models, comparing them in terms of both recon-

struction performance and run times. As for OMP, we also

use two versions: OMPK terminates after K steps, while
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Fig. 1. Recovery results over sparsity for normally distributed

non-zero coefficients.

OMPe runs until ‖r‖2 ≤ ε‖y‖2. For all tests, A*OMP pa-

rameters are selected as I = 3, B = 2, P = 200. ε is set

to 9×10−7 in the noiseless case, while it is selected with

respect to the noise level in noisy scenarios. Kmax is selected

as either 50 or K + 10, whichever is greater. Each test is

repeated over 500 randomly generated samples of length

N = 256. Nonzero entries are selected as standard normally

distributed, uniformly distributed in [−1, 1] or equal to one

(binary). M = 100 observations were taken from each vec-

tor, drawing an individual Φ from normal distribution with

mean 0 and standard deviation 1/N . The recovery results are

given in terms of the Average Normalized Mean-Squared-

Error (ANMSE) and exact reconstruction rates. ANMSE is

defined as

ANMSE =
1

500

500
∑

i=1

‖xi − x̂i‖
2

2

‖xi‖22
(4)

where x̂i is the reconstruction of the i’th test vector xi.

As for the cost model parameter α, we select different

values for A*OMP variants. αMul = 0.8 is selected for Mul-

A*OMPK . For Mul-A*OMPe, this is relaxed as αMul = 0.9.

Using AMul-A*OMPe, a further relaxation to αAMul = 0.97
is used. As mentioned in Section 3, when α is increased, less

nodes are opened and the search terminates faster. Using the

modified termination criterion and AMul cost model, α can

be selected very close to 1 without sacrificing the recovery

accuracy, as demonstrated below.

The simulations for A*OMP were performed using the

AStarOMP software developed by the authors. The AS-

tarOMP software incorporates a trie structure to implement

the A* search tree in an efficient way. The orthogonaliza-

tion over the residue is solved using the QR factorization.

This software, and its MATLAB version, are available at

http://myweb.sabanciuniv.edu/karahanoglu/research/.

Figure 1 and 2 depict the recovery performance for sparse

signals with non-zero entries from standard normal distribu-

tion and uniform distribution in [−1, 1], respectively. In both

cases, all A*OMP versions provide significantly better recon-
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Fig. 2. Recovery results over sparsity for uniformly dis-

tributed non-zero coefficients.
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Fig. 3. Average run-time of A*OMP per vector using the AS-

tarOMP software.

struction results than BP, SP and OMP. We also observe that

Mul-A*OMPK , Mul-A*OMPe and AMul-A*OMPe all yield

very close ANMSE. However, the difference between them

is clearly visible in the exact recovery rates: The modified

termination criterion of A*OMPe improves exact recovery

significantly. We may conclude that, for this case A*OMPe

is better at recovering coefficients with smaller magnitudes,

which do not change the reconstruction error significantly,

however improve exact recovery. This fact is also visible in

the results for OMP: Though OMPe and OMPK yield simi-

lar ANMSE, the exact recovery rate of OMPe is significantly

better than OMPK and even better than SP.

According to Figures 1 and 2, there is no significant dif-

ference between reconstruction performances Mul-A*OMPe

and AMul-A*OMPe. The difference is, however, clear in

Figure 3, which depicts the average run time per vector for

A*OMP variants and OMPe in the two simulations mentioned

above. OMPe is naturally the fastest. It is clear that both

error-based termination and the novel AMul cost model de-

crease the run times of the A* search due to using a larger

α value. As a result, AMul-A*OMP is significantly faster

than other A*OMP variants. Note that we do not compare the

run times for BP and SP, as we run these in MATLAB while

A*OMP and OMP run times are obtained using the stand-
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Fig. 4. Recovery results over sparsity for binary non-zero

coefficients. Note that both graphs share the same legend.
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Fig. 5. Average distortion over SNR in the noisy recovery sce-

nario. K is 30 and 25 for normally and uniformly distributed

entries, respectively.

alone AStarOMP software.

Sparse binary signals are an interesting test case for our

purposes, as this case is known to be particularly challenging

for OMP-type algorithms. Recovery results for sparse binary

signals are depicted in Figure 4. These show that the error-

based termination criterion improves the A*OMP recovery.

The performance of SP is significantly better than A*OMPK ,

however, A*OMPe outperforms SP. BP is clearly better than

other algorithms in this example. Note that, for this particular

case, ℓ0 norm of the correct solution is exactly equal to its ℓ1
norm, which might be considered as an advantage for BP.

Figure 5 illustrates the recovery performance where the

observation vectors are contaminated with white gaussian

noise with different SNR levels. Here, K is selected as 30
and 25 for normally and uniformly distributed non-zero en-

tries, respectively. The distortion ratio refers to the ANMSE

in the decibel (dB) scale. We observe that A*OMPe is supe-

rior to others except for 5dB SNR where BP is slightly better.

It results in improved accuracy over A*OMPK for lower

SNR values. We compare the average A*OMP run times

for this scenario in Figure 6. As for the other cases above,

we observe that both error-based termination and AMul cost

model decrease the run times efficiently due to using a larger
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Fig. 6. Average run-time of A*OMP per vector in noisy re-

covery using the AStarOMP software.

α value. Consequently, AMul-A*OMPe is significantly faster

than other A*OMP variants.

6. SUMMARY

A*OMP algorithm utilizes best-first search for the com-

pressed sensing signal recovery problem. It incorporates

effective cost models and pruning techniques to make the tree

search practically possible. In this work, we introduced a

novel A*OMP variant, AMul-A*OMPe, which employs the

residue-based termination criterion and the AMul cost model,

which extends the Mul model in an adaptive manner. We

have discussed that the residue-based termination criterion is

capable of providing better recovery. Moreover, this holds

not only for A*OMP but also for OMP, an important conclu-

sion which is mostly underestimated in CS literature. This

termination criterion is also reduces A*OMP search times. A

further reduction of the search times is possible via the AMul

cost model as it allows a higher choice of the cost model pa-

rameter α. The proposed modifications have been evaluated

experimentally in noiseless and noisy scenarios including

sparse signals with different non-zero coefficient distribu-

tions in terms of both the recovery results and the run times.

These simulations have shown that AMul-A*OMPe promises

not only better recovery rates, but also faster termination of

the search.
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