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ABSTRACT 
 
A new approach to robust tracking of glottal LF-model 
parameters is presented. The approach does not rely on a 
new glottal source estimation algorithm, but instead 
introduces a new extensible multi-estimate fusion 
framework. Within this framework several existing 
algorithms are applied in parallel to extract glottal LF-model 
parameter estimates which are subsequently passed to 
quantitative data fusion procedures. The preliminary 
implementation of the fusion algorithm described here 
incorporates three glottal inverse filtering methods and one 
time-domain LF-model fitting algorithm. Experimental 
results for both synthetic and natural speech signals 
demonstrate the effectiveness of the fusion algorithm. The 
proposed method is flexible and can be easily extended for 
other speech processing applications such as speech 
synthesis, speaker identification and prosody analysis. 
 

Index Terms— LF-model, glottal source, data fusion 
 

1. INTRODUCTION 
 
Robust estimation of glottal source parameters is important 
for a number of applications. To improve naturalness, 
modern speech synthesis systems require a flexible and 
realistic parametric model to represent the glottal source 
rather than a simple pulse-train [1]. Glottal source 
parameters can be used to identify speakers [2]. Prosody 
analysis and modification needs not only intonation 
information but also voice source control rules for quality 
improvement [3].  

Speech is generally considered to be the convolution of 
two components: the glottal source and the vocal tract 
impulse response. Thus, to track the glottal source 
parameters we need to decompose speech into its two 
components. The most widely used method is glottal inverse 
filtering (GIF). Firstly the vocal tract filter coefficients are 
estimated, and used to remove the vocal tract resonances 
from the speech signal [4, 5] to yield the glottal source 
waveform. Subsequently the source component parameters 
are obtained by fitting the Liljencrants-Fant (LF) model [6] 
to the glottal source signal [7, 8].  

The diversity and complexity of human speech (and 
extraneous factors such as recording devices and ambient 
noise), pose significant challenges to any single glottal 
source estimation algorithm. For example, the performance 
of closed phase inverse filtering (CPIF) may be influenced 
by the selection of the closed glottis interval or the validity 
of the zero excitation assumption, and iterative adaptive 
inverse filtering (IAIF) does not perform well for higher 
fundamental frequencies [10]. As such it is difficult to find a 
consistently accurate and reliable estimate of the glottal 
source component. Instead, as in the approach presented 
here, it may be more reasonable to draw on different 
algorithms in parallel to extract the multiple source 
parameter estimates and to combine them by quantitative 
data fusion techniques. To the best of our knowledge, only 
limited research has been carried out into this approach. One 
example is the method proposed by Drugman [11], which 
combines glottal source estimates from two different 
algorithms. However only the glottal open phase parameters 
are estimated and combined and the limited variation of 
parameters across continuous pitch cycles for individual 
speakers is not considered and the fusion rules are 
straightforward.  

This paper presents a general framework for tracking 
the complete set of glottal source LF-model timing 
parameters of voiced speech segments by fusing the 
estimates obtained from multiple algorithms. In the 
following sections the structure of the fusion algorithm is 
presented, a preliminary implementation of the fusion 
algorithm is described, and experimental results are 
provided for both synthetic and real speech signals. 
 

2. FUSION FRAMEWORK 
 
Our fusion framework is depicted in Fig. 1. A voiced speech 
segment is firstly divided into overlapping frames ܨଵ,… ,  .௅ܨ
Next, two or more speech decomposition (SPD) algorithms 
are applied to each frame in parallel. These algorithms may 
include Linear Prediction-based glottal inverse filtering 
techniques [4, 5 and 12] or any other source-vocal tract 
separation methods [10, 13]. Each SPD algorithm separates 
the speech signal into glottal source and vocal tract 
components. Generally the vocal tract component can be 
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Figure 1. A general framework of the multi-estimate fusion algorithm 

described by an all-pole filter with the filter coefficients 
obtained by an optimisation algorithm such as linear 
prediction [4]. With the extracted vocal tract coefficients the 
speech signal can be inverse filtered to cancel the vocal tract 
effect. Once the vocal tract component is removed the 
glottal flow derivative (GFD) signal is obtained. For each of 
the overlapping frames the corresponding inverse filtered 
GFD signals obtained from the same SPD algorithm are 
concatenated by an overlap-and-add procedure and the 
outputs of this stage are n GFD (where n is the number of 
decomposition algorithms) signals for the original voiced 
segment. 

Next the glottal source parameters are estimated. 
Because of its effectiveness for approximately 83% of 
natural phonations [14], the LF-model [6] is currently used 
in the proposed framework for representing the glottal 
source. Each GFD signal is divided into consecutive pitch 
periods. Subsequently, one or more LF-model fitting (LFF) 
algorithms are applied to each pitch period of the GFD 
signals. The LFF algorithm is used to estimate the glottal 
LF-model parameters (LFP) by fitting the LF-model to the 
GFD signal. Given n speech decomposition algorithms and 
m LF-model fitting algorithms, a total of n×m sets of LF-
model parameter estimates are obtained for each pitch 
period. In addition, for each set of estimated LF parameters, 
an error covariance σ is calculated.  

Finally, the fusion procedure is applied. For a single 
pitch period the n×m sets of estimated LF-model paramters 
are combined by the generalised Millman’s fusion formula 
[15] given in (1): 

 

ܨܮ ௙ܲ௨௦௘ௗ ൌ ܽଵଵܨܮ ଵܲଵ ൅ ⋯൅ ܽ௜௝ܨܮ ௜ܲ௝ ൅ ⋯൅ ܽ௡௠ܨܮ ௡ܲ௠, 
 ܽଵଵ ൅ ܽଵଶ ൅ ⋯൅ ܽ௜௝ ൅ ⋯൅ ܽ௡௠ ൌ 1, 
 ܽ௜௝ ൌ ଵఙ೔ೕ ሺ ଵఙభభ ൅ ⋯൅ ଵఙ೔ೕ ൅ ⋯൅ ଵఙ೙೘ሻିଵ,             (1) 

 
where i=1,…n, j=1,…m, and ܽ௜௝ is the weighting factor of 
the corresponding set of LFP, which is calculated from the 
error covariances. It can be observed that the smaller the 
covariance, the more weight is given to the set of estimates. 
The measurement fusion procedure is applied across all 
pitch periods in the speech signal to produce a single, fused 
set of LF-model parameter estimates. 

In order to obtain reliable parameter trajectories, it is 
necessary to smooth the fused LF-model parameters across 
all pitch periods. It is reasonable to assume limited variation 
in glottal source parameters across adjacent pitch periods 
especially for sustained vowel sounds. Tooher [16] shows 
that the variation of LF-model parameters can be regarded 
as a linear process. Thus, assuming that the true glottal 
source parameters are the system state to be tracked, and the 
fused LF-model parameter estimates are the measurement, 
the corresponding state-space process and measurement 
equations can be described by (2): 
ܨܮݎ  ௞ܲ ൌ ܨܮݎ ௞ܲିଵ ൅  ,௞ݓ

ܨܮ  ௞ܲ ൌ ܨܮݎ ௞ܲ ൅  ௞,                           (2)ݒ
 

where ܲܨܮݎ is the vector of real glottal source parameters, 
LFP is the vector of fused voice source estimates, w and v 
are the process noise and measurement respectively, with 
Gaussian distributions ݌ሺݓሻ ൌ ܰሺ0, ܳሻ, ݌ሺݒሻ ൌ ܰሺ0, ܴሻ. 

Equation (2) is based on the following two premises: 1)  
that the variation of the voice source parameters across 
adjacent pitch periods is small, so that the true glottal source 
parameters of the ݇௧௛  pitch cycle can be represented by 
source parameters of the ሺ݇ െ 1ሻ௧௛ pitch cycle plus process 
noise; 2) that the estimated source parameters can be 
considered as a summation of true parameter values and 
measurement noise. With such correlation, it is reasonable 
to use a Kalman filter (KF) to track the glottal source 
parameters. The KF performs best when the process and 
measurement noise covariances are known. However, for 
real speech signals there is no such a priori information 
available. The expectation-maximisation (EM) algorithm 
[17] is a machine learning technique for optimisation by 
recursively adjusting the estimates to maximise the 
corresponding log-likelihood. It is applied here to refine KF 
parameters given a set of “reasonable” initial values. 
Afterwards, with these re-estimated parameters the KF is 
utilised to estimate the optimal glottal source parameters 
LFPopt across pitch periods of the full voiced segment. 
 

3. PRELIMINARY IMPLEMENTATION 
 
Our preliminary implementation of the multi-estimate fusion 
algorithm is described as follows. The input voiced speech 
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segment is divided into frames of length 40ms with 50% 
overlap. Each frame is processed by three glottal inverse 
filtering algorithms (SPD in Fig. 1).  

The first algorithm is iterative adaptive inverse filtering 
(IAIF) [5], which is based on the assumption that the glottal 
flow waveform can be represented by a first-order all-pole 
model. The IAIF algorithm operates by repeatedly removing 
the glottal and radiation effects using low order Linear 
Prediction analysis and inverse filtering. This removes the 
overall spectral tilt of the speech and allows estimation of 
the vocal tract filter using high order linear prediction 
analysis. The estimated vocal tract filter is used to inverse 
filter the original speech signal to extract the glottal flow 
derivative. 

Weighted recursive least square with variable forgetting 
factor (WRLS-VFF) analysis [12] is the second speech 
decomposition method. The approach assumes that the 
speech signal is generated by an ARMA model. WRLS-VFF 
analysis operates by recursively minimising the prediction 
error for speech samples and allowing the variation of the 
forgetting factor. During the analysis process, the forgetting 
factor and the ARMA coefficients are obtained. Generally 
the maximum prediction error occurs at the glottal closure 
instant. Accordingly, the ARMA coefficients at the instant 
of glottal closure can be used to do the inverse filtering.  

Iterative closed phase inverse filtering (ICPIF) [4] is 
also used in this preliminary implementation. Typically 
closed phase inverse filtering [10] operates on the 
assumption that for several milliseconds after the glottal 
closing instant the glottis remains closed and during this 
time the speech signal is due solely to the decaying vocal 
tract response. Thus, linear predictive analysis performed 
across this time interval models only the vocal tract filter 
and excludes any components due to the glottal source. The 
glottal waveform can be determined by inverse filtering the 
entire pitch period with the coefficients obtained from the 
closed phase. The first-order autocorrelation parameter can 
be used to measure the smoothness of the estimated glottal 
source waveform [4] and an iterative analysis procedure is 
applied to select the smoothest glottal flow derivative (GFD) 
signal by utilising different closed phase intervals. In our 
implementation of ICPIF, the initial glottal closing instants 
are found by analysing the variable forgetting factor ߣ 
obtained from WRLS-VFF [12]. 

GFD signals obtained from each SPD algorithm are 
concatenated by an overlap-and-add procedure to generate 
the entire glottal flow derivative signal for the original input 
speech segment. Afterwards, a new time-domain LF-model 
fitting (NTDLFF) algorithm [7] is applied to the three sets 
of GFD signals to extract the glottal source shape 
parameters period by period. These parameters are the open 
quotient ௤ܱ ൌ ௘ܶ ଴ܶ⁄ , the asymmetry coefficient ߙ௠ ൌ௣ܶ ௘ܶ⁄  and the return phase parameter ܴ௔ ൌ ௔ܶ ଴ܶ⁄ . The 
error covariance for individual pitch periods is calculated 
from the fitting errors between the inverse filtered GFD 
signal and reconstructed LF-model. Thus three sets of 

Figure 2. Preliminary implementation of multi-estimate fusion algorithm 

 
estimated LFP sequences are combined by the measurement 
fusion procedure. Subsequently Kalman filtering with the 
EM algorithm is applied to track the parameter trajectories. 
The preliminary implementation of the fusion algorithm is 
presented in Fig. 2. 
 

4. EVALUATION 
 
4.1. Synthetic Speech 
 
To test the validity of the fusion algorithm, a segment of 
synthetic speech was generated as follows: 1) 50 LF-model 
pulses were created from a set of LF parameters ௣ܶ ൌ 0.48, ௘ܶ ൌ 0.65 , ௔ܶ ൌ 0.035  and ଴ܶ ൌ 1 . 2) The first 20 were 
passed through a formant synthesizer for the vowel /AH/ 
and the last 20 pulses for the vowel /IH/ (thus two sustained 
vowel segments were obtained.) 3) A “coarticulatory” 
segment was generated by synthesizing the middle 10 pulses 
with line spectral frequencies calculated by linear 
interpolation from /AH/ to /IH/. 4) The three segments were 
concatenated.  

The multi-estimate fusion algorithm was applied to this 
synthetic speech segment. The root mean square error 
(calculated by ܴܧܵܯሺݔොሻ ൌ ඥܧሺሺݔො െ  ሻଶሻ, where x is theݔ
true value and ݔො is the corresponding estimate) of the 
estimated LF-model parameters by each algorithm and by 
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Table 1. RMSE scores of LF-model parameters estimated by different 
algorithms for clear synthetic speech  

 ࢓࢜࢕ࢉ ࢇࡾ ࢓ࢻ ࢗࡻ 

IAIF 0.0298 0.0174 0.0247 0.0317 

ICPIF 0.0311 0.0194 0.0289 0.0626 

WRLS-VFF 0.0422 0.0205 0.0383 0.0691 

ME-FUSION 0.0272 0.0142 0.0239  
 
 

the fusion method are presented in Tables 1, with the 
corresponding mean error covariances ܿݒ݋௠  in the last 
column. It can be observed that the fusion algorithm shows 
consistently smaller RMSE scores compared to other 
methods. For all three LF-model parameters, both IAIF and 
ICPIF performed well, and a relatively bigger RMSE was 
generated by WRLS-VFF. It is worth mentioning that more 
weight was given to the IAIF estimates by the fusion 
procedure, due to its producing the smallest mean error 
covariance.  
 
4.2. Natural Speech Segments 
 
10 voiced speech segments were randomly extracted from 
the CMU-ARCTIC database [18] (5 from the male voice 
bdl, 5 from the female voice slt), including sustained vowel 
sounds and voiced transitions, for robustness testing. There 
is no a priori information available for the glottal source 
parameters for this real speech, therefore it is difficult to 
quantify estimation errors. The coefficient of variation    
(CV=Standard deviation/Mean) used in [8] can describe the 
robustness of the estimated parameters, so it was applied 
here for the evaluation. Due to space limitations, only the 
mean scores of the results across all segments for each 
speaker are presented in Fig. 3 and Fig. 4. Although it is 
apparent that results vary across parameters and between 
speakers, the CV scores are consistently lower for the multi-
estimate fusion method compared to the other glottal inverse 
filtering algorithms used alone.  
 

5. CONCLUSIONS & FUTURE WORK 
 
A general multi-estimate fusion framework for tracking 
glottal LF-model parameters was presented and our 
preliminary implementation of the algorithm was described. 
Experimental results for both synthetic and real speech 
showed that by combining the estimates extracted from 
different algorithms with a quantitative data fusion 
technique, the tracked LF-model parameters were more 
robust than those obtained from any single algorithm used in 
isolation. 

In our preliminary implementation only one LF-model 
fitting algorithm was applied; to improve the performance of 
the fusion algorithm, different methods will be used in 
future work such as a frequency-based fitting algorithm [8] 
which shows robustness to low-frequency phase distortion. 

Figure 3. Coefficient of variation (%) for the three LF-model 
parameters in male speech segments 

Figure 4. Coefficient of variation (%) for the three LF-model 
parameters in female speech segments 

Also because of the flexibility of the fusion algorithm many 
different glottal source estimation methods can be applied. 
For example, although for the fusion framework the source-
vocal tract separation and glottal source model fitting 
procedures are in two levels, joint source-tract estimation 
[9] can be used to directly extract the source parameters. In 
addition, other effective multi-sensor data fusion techniques 
(information filter, data association, etc.) will be utilised to 
test the significance of the proposed algorithm for a variety 
of speech signals.  

To test the effectiveness of the fusion algorithm for real 
speech, more comprehensive evaluation methods would be 
applied. For example, the estimated LF-model parameters 
can be used to remove the glottal effect from the original 
speech signal to yield only the vocal tract component. 
Subsequently, spectral analysis techniques such as discrete 
all-pole modeling (DAP) [19] can be applied to measure the 
goodness-of-fit of the DAP model to the extracted vocal 
tract component. In addition, perceptual listening tests on 
speech re-synthesised from estimated voice source 
parameters could be used to measure the effectiveness of the 
fusion method. 

 
 

qO m aR
0

5

10

15

20

25

30

35

40

45

LF-model Parameters

C
oe

ff
ic

ie
nt

 o
f 

V
ar

ia
ti

on
 (

%
)

 

 

IAIF
ICPIF
WRLS-VFF
ME-FUSION

qO m aR
0

5

10

15

20

25

30

35

40

45

50

LF-model Parameters

C
oe

ff
ic

ie
nt

 o
f 

V
ar

ia
ti

on
 (

%
)

 

 

IAIF
ICPIF
WRLS-VFF
ME-FUSION

2785



ACKNOWLEDGEMENTS 
 
The authors gratefully acknowledge the support of Haoxuan 
Li by the China Scholarship Council and the European 
Regional Development Fund (ERDF) in carrying out the 
work presented in this paper. 
 

REFERENCES 
 
[1] J. Cabral, S. Renals, K. Richmond, and J. Yamagishi, 

“Towards an improved modeling of the glottal source in 
statistical parametric speech synthesis”, ISCA SSW6, 2007. 
 

[2] M. D. Plumpe, T. F. Quatieri, and D. A. Reynolds, “Modeling 
of the glottal flow derivative waveform with application to 
speaker identification”, IEEE Trans. Speech and Audio 
Processing, vol. 7, no. 5, pp. 569-586, 1999. 
 

[3] H. Strik, L. Boves, “On the relation between voice source 
parameters and prosodic features in connected speech”, 
Speech Communication, Vol. 11, pp. 167-174, 1992. 
 

[4] E. Moore and M. Clements, “Algorithm for automatic glottal 
waveform estimation without the reliance on precise glottal 
closure information”, in Proceedings of IEEE International 
Conference on Acoustics, Speech, and Signal Processing 
(ICASSP), vol. 1, pp. 101-104, 2004. 
 

[5] P. Alku, “Glottal wave analysis with pitch synchronous 
iterative adaptive inverse filtering”, Speech Communication, 
vol. 11, no. 23, pp. 109-118, 1992. 
 

[6] G. Fant, J. Liljencrants, and Q. Lin, “A four-parameter model 
of glottal flow”, STL-QPSR, vol. 4, no. 1985, pp. 1–13, 1985. 
 

[7] H. Li, R. Scaife and D. O'Brien, “LF model based glottal 
source parameter estimation by extended Kalman filtering”, in 
Proceedings of the 22nd IET Irish Signals and Systems 
Conference, 2011. 
 

[8] J. Kane, M. Kane, and C. Gobl, “A spectral LF model based 
approach to voice source parameterisation”, in 11th Annual 
Conference of the International Speech Communication         
Association, 2010. 
 

[9] Q. Fu and P. Murphy, “Robust glottal source estimation based 
on joint source-filter model optimization”, IEEE Trans. 
Audio, Speech, and Language Processing, vol. 14, no. 2, pp. 
492-501, 2006. 
 

[10] D. Wong, J. Markel, and A. Gray, “Least squares glottal 
inverse filtering from the acoustic speech waveform”, IEEE 
Trans. on Acoustics, speech and signal processing, pp. 350-
355, 1979. 
 

[11] T. Drugman, T. Dubuisson, N. D’Alessandro, A. Moinet, and 
T. Dutoit, “Voice source parameters estimation by fitting the 
glottal formant and the inverse filtering open phase”, in 
Proceedings of 16th European Signal Processing Conference, 
2008. 
 

[12] D. G. Childers, J. C. Principe, Y.T. Ting, “Adaptive WRLS-
VFF for speech analysis”, IEEE Trans. Speech and Audio 
Processing, vol.3, no.3, pp.209-213, 1995. 

 
[13] T. Drugman, B. Bozkurt, and T. Dutoit, “Complex cepstrum-

based decomposition of speech for glottal source estimation”, 
in Proc. Interspeech, pp. 116-119, 2009. 

 
[14] H. Strik and L. Boves, “On the relationship between voice 

source parameters and prosodic features in connected 
speech,” in Speech Communication, vol. 11, pp. 167-174, 
1992. 
 

[15] V. Shin, Y. Lee, and T. Choi, “Generalized millman’s formula 
and its application for estimation problems,” Signal 
Processing, vol. 86, pp. 257-266, 2006. 
 

[16] M. Tooher and J. G. McKenna, “Variation of glottal LF 
parameters across F0, vowels, and phonetic environment”, in 
ISCA Tutorial and Research Workshop on Voice Quality: 
Functions, Analysis and Synthesis, 2003. 
 

[17] R. H. Shumway and D. S. Stoffer, “An approach to time 
series smoothing and forecasting using the EM algorithm”, 
Journal of time series analysis, vol. 3, no. 4, pp. 253-264, 
1982. 

 
[18] “CMU-ARCTIC speech synthesis databases”, available at 

http://festvox.org/cmu-arctic/index.html. 
 

[19] A. El-Jaroudi, J. Makhoul, "Discrete all-pole modeling", IEEE
 Trans. on Signal Processing, vol.39, no.2, pp.411-423, Feb 1
991. 
 

 

2786


