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ABSTRACT

The resolvability of two closely spaced signals is an important
performance measure for parametric estimation problems. In
this paper, we investigate the minimum signal-to-noise ra-
tio, denoted by SNRmin, required to correctly resolve two
closely spaced stochastic sources in the far-field context. As
a by-product, we first derive an analytical expression of the
stochastic Cramér-Rao bound (CRB) with respect to the sep-
aration parameter (i.e., we consider a new parametrization
where one source is fixed). Then using the Smith criterion,
we derive a closed-form expression of the SNRmin. Our an-
alytical expression reveals some insightful properties that are
discussed in detail and, finally, numerical examples are pro-
vided to corroborate the proposed theoretical analysis.

Index Terms— Stochastic Cramér-Rao bound, statistical
resolution limit, minimum signal-to-noise ratio

1. INTRODUCTION

The problem of far-field source localization by an array of
sensors is a significant topic with numerous applications in-
cluding radar, sonar, wireless communications [1], etc. One
of the most important measures to quantify the performance
for this parameter estimation problem is the resolvability of
closely spaced signals in terms of their parameter of inter-
est. In this paper, we aim to investigate the relationship be-
tween the resolvability and the signal-to-noise ratio by focus-
ing on the following question: “What is the minimum signal-
to-noise ratio required for a sensor array to correctly resolve
two closely spaced far-field stochastic signals for a given dis-
tance between them?”

To address the above question, we firstly revise the con-
cept of the statistical resolution limit (SRL), which is a com-
mon tool to characterize the resolvability of two signals.
The SRL is generally defined as the minimum distance with
respect to the parameter of interest (e.g. the directions-of-
arrival (DOA), electrical angles, etc.), that allows distinguish-
ing between two closely spaced sources [2–4]. There exist
three fundamental approaches to describe the SRL. The first
is based on the analysis of the mean null spectrum (i.e., it
is related to a specific high-resolution algorithm) [5], the
second on the detection theory [6, 7], and the third on the

estimation theory, employing the Cramér-Rao bound (CRB)
[2, 8, 9]. One widely used criterion for the SRL based on
CRB was proposed by Smith [2], and states that two signals
are revolvable if the distance (w.r.t. the parameter of interest)
between them is greater than the standard deviation of the
distance estimation. Therefore, the SRL is associated with a
minimum required signal-to-noise ratio, denoted by SNRmin,
to correctly resolve two closely spaced sources. In this paper
we consider the SRL in the Smith sense for the following
reasons. i) The Smith criterion is preferable to other criteria
related to the third approach, e.g., the one proposed in [8],
since it takes into account the coupling between the param-
eters. ii) Furthermore, a known drawback of the mean null
spectrum approach is that it is designed for a specific high-
resolution algorithm, and, iii) on the other hand, the SRL
based on the hypothesis test approach is related to that based
on the Smith criterion [4]. The main objective of this paper
is to derive an explicit, analytical expression of SNRmin rep-
resenting this relationship for a large number of snapshots.
As a by-product, a closed-form expression of the stochastic
CRB (w.r.t. the source separation) is derived, which serves
to obtain the analytical expression of SNRmin. The CRB
derived in this paper is based on a different parametrization
than the commonly used one (where we consider one source
to be fixed and the separation between the two sources to
be the unknown parameter of interest) and is, to the best
of our knowledge, absent in the current literature. Finally
one should note that our analytical expression reveals some
insightful information related to the behavior of SNRmin.
Furthermore, it is computationally efficient for large number
of sensors (i.e., by saving the trouble of inverting the data
covariance matrix).

This paper is organized as follows. In Section 2, we intro-
duce the observation model and the related assumptions con-
cerning the parametrization. Section 3 is mainly dedicated
to the derivation of the stochastic CRB and of the SNRmin.
In Section 4, simulation results are presented to validate our
analytical derivation. We also provide a discussion on some
insightful properties revealed by the result of the simulations.
Finally, in Section 5, we summarize our work and provide
some concluding comments.

The following notation will be employed throughout this
paper: (·)H , (·)∗ and (·)T denote the conjugate transpose, the
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conjugate and the transpose of a matrix, respectively. tr{·}
and vec{·} denote the trace and the vectorization of a matrix,
respectively. <{·} and ={·} denote the real and imaginary
part respectively. ⊗ denotes the Kronecker product, whereas
E{·} denotes the expectation.

2. PROBLEM FORMULATION

Consider a linear array, not necessarily uniform, comprising
M sensors, on which two far-field narrowband stochastic sig-
nals s1(t) and s2(t) impinge with directions-of-arrival θ1 and
θ1 + δ, respectively, where δ denotes the spacing between the
DOAs of the two sources. The received signal at the m-th
sensor, denoted by xm(t), can be expressed as [1]:

xm(t) =s1(t)e
jkdm sin(θ1) + s2(t)e

jkdm sin(θ1+δ)

+ nm(t), t = 1, ..., N and m = 1, ...,M. (1)

where dm is the spacing between the first sensor (which is
chosen as the so-called reference sensor, i.e., d1 = 0) and the
m-th sensor, k = 2π

λ is the wave number (with λ denoting
the wave length), nm(t) denotes the additive noise at the m-th
sensor, and N is the number of snapshots.

The vector representation of (1) is given by:

x(t) = As(t) + n(t), (2)

where x(t) = [x1(t), ..., xM (t)]
T , s(t) = [s1(t), s2(t)]

T ,
n(t) = [n1(t), ..., nM (t)]

T , and A = [a(θ1),a(θ1 + δ)].
The vectors a(θ1) and a(θ1+δ) represent the steering vectors
of the array w.r.t. directions θ1 and θ1+δ, respectively, which
are defined as a(θ1) = [1, ejkd2 sin(θ1), ..., ejkdM sin(θ1)]T and
a(θ1 + δ) = [1, ejkd2 sin(θ1+δ), ..., ejkdM sin(θ1+δ)]T .

The following assumptions are made in the remaining of
the paper:

A1 The sensor noise follows a complex circular white Gaus-
sian distributed, both spatially and temporally, with
zero-mean and unknown noise variance σ2.

A2 The source signals are temporally white zero-mean Gaus-
sian processes whose covariance matrix is denoted by

S =

[
σ2
1 ρ
ρ∗ σ2

2

]
, where σ2

1 and σ2
2 denote the variances

of the two source signals, respectively, ρc = ρ
σ1σ2

is the
correlation coefficient between the two signals. Further
we assume that the source signals and noise signals are
mutually independent.

A3 The unknown parameter vector is1 ξ =
[
δ, ςT , σ2

]T
,

where ς = [σ1, σ2,<{ρ},={ρ}]T ; and the number of
snapshots is assumed to be large.

1In this paper θ1 can be viewed as a known parameter. The case of un-
known θ1 is beyond the scope of this paper.

3. DERIVATION OF SNRmin

The derivation of the SNRmin can be divided roughly into two
steps. The first step is the derivation of the stochastic CRB
w.r.t. δ; the second is the utilization of the Smith criterion,
leading to the final expression of the SNRmin.

To the best of our knowledge there is no closed-form ex-
pression at hand suiting our purpose and, hence, entails a new
derivation of the stochastic CRB w.r.t. the model described
by (1). The obtained expression serves as the cornerstone to
obtain the closed-expression of the SNRmin.

The derivation of CRB(δ) follows principally the same
train of thought as that in [10], and gives the following result:

CRB(δ) =
σ2

2N
· 1

dHδ Π⊥Adδc
H
ρ A

HR−1Acρ
. (3)

with cρ =
[
ρ, σ2

2

]T
and dδ =

∂a(θ1+δ)
∂δ . For the details of the

derivation please refer to the appendix of this paper.
Now consider the SRL defined by the Smith’s criterion:

Two signals are revolvable if the distance (w.r.t the parameter
of interest) between them is greater than the standard devia-
tion of the distance estimation, i.e., δ is given as the solution
of the following equation:

δ2 = CRB(δ). (4)

From (4) we shall derive the expression of the SNRmin for a
large number of snapshots, since it is evident that the SNR
for which (4) holds corresponds to SNRmin. To make our
aim accessible, we have to simplify the expression of CRB(δ)
using appropriate mathematical manipulations and approxi-
mations. Based on A1 and A2 the data covariance matrix
R = E{x(t)xH(t)} can be expressed as:

R = ASAH + σ2I. (5)

where I is defined as the identity matrix. Resorting to the
Woodbury matrix identity [11] we obtain
R−1 = (ASAH + σ2I)−1

=
1

σ2

(
I − 1

σ2
A(S−1 +AH 1

σ2
A)−1AH

)
=

1

σ2

(
I −A(σ2S−1 +AHA)−1AH

)
. (6)

For a sufficient SNR (i.e., for a small σ2), R−1 can be ap-
proximated2 as [11, eq. (177)]:

R−1 =
1

σ2

(
I −A(σ2S−1 +AHA)−1AH

)
≈ 1

σ2

(
I −A

(
(AHA)−1 − σ2(AHA)−1S−1(AHA)−1

)
AH

)
=

1

σ2

(
I −AA]

)
+ (A])HS−1A]

=
1

σ2
Π⊥A + (A])HS−1A], (7)

2Note that in our application this approximation is tight, since our numeri-
cal simulation demonstrates that the SNRmin obtained based on this approxi-
mation is in a good agreement with that acquired numerically, as is illustrated
later in Fig. 1.
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where A] = (AHA)−1AH denotes the Moore-Penrose
pseudoinverse of A. Consequently in the denominator of the
expression (3) we have,

cHρ A
HR−1Acρ = c

H
ρ S
−1cρ

=
1

σ2
1σ

2
2 − |ρ|2

[
ρH σ2

1

] [ σ2
2 −ρ

−ρH σ2
1

] [
ρ
σ2
2

]
= σ2

2 . (8)

Combining (3), (4) and (8) we obtain:

CRB(δ) ≈ σ2

2Nσ2
2

· 1

dHδ Π⊥Adδ
= δ2

(9)

Finally, we obtain

SNRmin =
σ2
2

σ2
=

1

2Nδ2
· 1

dHδ Π⊥Adδ

=
1

2Nδ2
· M

2 − |aHδ a1|2

Q
, (10)

where Q = µk2 cos2(θ2)(M
2 − |aHδ a1|2) −M(|dHδ a1|2 +

|dHδ aδ|2) + 2<{dHδ aδaHδ a1a
H
1 dδ}, µ =

∑M
m=2 d

2
m, a1

and aδ stand for a(θ1) and a(θ1 + δ), respectively. Note
that, for the Uniform Linear Array (ULA) configuration,
µ = M(M−1)(2M−1)

6 d2, where d denotes the inter-sensor
spacing.

4. SIMULATIONS AND NUMERICAL ANALYSIS

The context of our simulations is a ULA comprising M =
6 sensors with half-wave length inter-element spacing. The
snapshot number is given by N = 100 and σ2

2 = 1. The sim-
ulations reveal the following properties of the SRL in terms
of SNRmin:

• In Fig. 1 we compare our approximate analytical ex-
pression of SNRmin given by (10) with the exact nu-
merical ones (given as the numerical solution of (4)) for
signals with different values of the correlation. On the
one hand, it demonstrates the validity of our approxi-
mation in (9) for a sufficient SNR, for which the ana-
lytical SNRmin approaches the exact resolution limit.
On the other hand, it is noticeable that according to
our derived expression, the expression of SNRmin is in-
dependent of ρc, i.e., the correlation between two sig-
nals. This means that ρc has no impact on the SRL for
a sufficient SNR. This is also corroborated by Fig. 1,
from which we see that only for low SNR cases ρc has
a slight impact on SNRmin. We observe that signals
with a higher ρc have a negligible better performance,
whereas this impact gradually disappears as the SNR
increases and is negligible for a high SNR.

• The results displayed in Fig. 2 demonstrate the behav-
ior of SNRmin w.r.t. different values of θ1 and shows

that the former is dependent on the latter. The statis-
tical resolution limit in terms of SNRmin increases as
the value of θ1 approaches π

2 . Hence the broadside ar-
ray directions have a improved resolution limit as com-
pared to the end-fire directions, which matches our ex-
pectations.

• In Fig. 3 we compare SNRmin given by (10) with
SNRmin−root (i.e., the minimum SNR required to re-
solve two closely spaced source using the root-MUSIC
scheme 3, which is obtained by applying the Smith
criterion.) The figure demonstrates the validity of the
former as a lower bound of the SNR required for the
resolution.

• In Fig. 4 we investigate the impact of the sensor ar-
ray geometry on SNRmin. Four types of array config-
urations are considered, as shown in Table 1. The re-
sult reveals that a loss of sensors in the array geometric
configuration has a considerable impact on the SNRmin

only when it causes a diminution of the aperture size of
the array, e.g., as in the case of the array Type 1 in Table
1. If, however, the array aperture remains unchanged,
then the impact is considerably mitigated, e.g., as in the
case of array Type 2 and Type 3. One can further no-
tice that, by comparing the results given by Type 2 and
Type 3, that a removal of sensors closer to the reference
sensor causes a slightly higher SNRmin.

Array Type Geometric Configuration

Type 1 ◦ • • ◦ • • ◦ ◦
Type 2 • • ◦ • ◦ ◦ ◦ •
Type 3 • ◦ ◦ ◦ ◦ • • •
Type 4 • • • • • • • •

Table 1. Different array geometric configurations. • and ◦
represent the position of sensor and missing sensors, respec-
tively. The inter-element spacing is half-wave length.

5. CONCLUSIONS

In this paper we derived the statistical resolution in terms
of a minimum SNR required to revolve two closely spaced
signals. As a by-product, we also obtained the stochastic
Cramér-Rao bound w.r.t. the separation between the DOA
of the two signals. Both expressions are given in closed form
and hence shed light on the behavior of SNRmin. Simulation
results are provided to corroborate our analytical expressions
and also to evaluate the properties of SNRmin from various
aspects. Our results confirm the intuition, that the SNRmin

3We use the root-MUSIC scheme as it is asymptotically efficient, and also
for the purpose of simplicity.
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Fig. 1. SNRmin (analytical) and SNRmin (numerical with dif-
ferent ρc) vs. δ for |ρc| = 0, 0.4, 0.8.
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Fig. 2. SNRmin vs. δ for θ1 = 10◦, 30◦, 50◦, 70◦.

depends on the direction of signals, in the sense that the res-
olution limit for signals at directions close to the broadside
array is significantly better than for signals at the end-fire. We
also noticed that the value of signal correlation has only neg-
ligible effect on the SNRmin. Finally, the impact of different
array geometries on SNRmin is investigated and discussed.

6. APPENDIX

In this appendix we demonstrate the outline of the derivation
of CRB(δ), with the emphasis on the main steps and on all
the steps that are different from [10] and [12].

Under the assumption A1-A3, the element in the i-th row
of the k-th column of the FIM can be written as:

[FIM(ξ)]i,k = Ntr

{
∂R

∂[ξ]i
R−1

∂R

∂[ξ]k
R−1

}
. (11)

Using [10, eq. (7)-(9)] and after some mathematical ma-
nipulations, the whole FIM can be written and further parti-
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Fig. 3. SNRmin and SNRmin−root vs. δ for θ1 = 30◦. The
trial number T=500.
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Fig. 4. SNRmin vs. δ for different types of array configura-
tions (θ1 = 30◦).

tioned as follows:

1

N
FIM(ξ) =

(
∂vec{R}
∂ξT

)H
(R−T ⊗R−1)

(
∂vec{R}
∂ξT

)
,

[
γHγ γHX

XγH XHX

]
,

(12)
where X =

[
Ψ υ

]
, γ = (R−

T
2 ⊗ R−

1
2 )∂vec{R}∂δ , Ψ =

(R−
T
2 ⊗R−

1
2 )∂vec{R}

∂ςT
, υ = (R−

T
2 ⊗R−

1
2 )∂vec{R}∂σ2 .

Based on the above partition of the FIM and applying the
Schur complement [13] on γ, one obtains:

CRB(δ) =
[
FIM(ξ)−1

]
1,1

=
1

N
· 1

γHγ − γHX(XHX)−1XHγ

=
1

N
· 1

γHΠ⊥Xγ
, (13)
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where Π⊥X indicates the orthogonal projector onto the orthog-
onal complement of the subspace spanned by the columns of
the matrixX , i.e., Π⊥X = I −X(XHX)−1XH .

Further, after some manipulations [10, eq. (16)], Π⊥X can
be expressed as

Π⊥X = Π⊥Ψ −
Π⊥Ψυυ

HΠ⊥Ψ
υHΠ⊥Ψυ

, (14)

where it can be proved that [12, eq. (28)]

υHΠ⊥Ψγ = 0. (15)

Combining (15) with (13) and (14), one obtains

CRB(δ) =
1

N
· 1

γHΠ⊥Ψγ
. (16)

On the other hand, the following equation holds [10, eq. (27)]:

Π⊥Ψγ = vec
{
Π⊥

R− 1
2 A

ΞH +ΞΠ⊥
R− 1

2 A

}
(17)

in which Ξ = R−
1
2Acρd

H
δ R

− 1
2 , with cρ denoting the sec-

ond column of S and dδ =
∂a(θ1+δ)

∂δ . Hence, one obtains

CRB(δ) =
1

N
· 1

γHΠ⊥Ψγ
=

1

N
· 1

γHΠ⊥ΨΠ⊥Ψγ

=
1

N
· 1

2<{tr{Π⊥
R− 1

2 A
ΞHΠ⊥

R− 1
2 A

ΞH}+ tr{ΞΠ⊥
R− 1

2 A
ΞH}}

=
1

N
· 1

2<{tr{ΞΠ⊥
R− 1

2 A
ΞH}}

=
1

N
· 1

2<{tr{R−
1
2Acρd

H
δ R

− 1
2Π⊥

R− 1
2 A
R−

1
2dδcHρ A

HR−
1
2 }}

=
1

N
· 1

2<{(dHδ R
− 1

2Π⊥
R− 1

2 A
R−

1
2dδ)(cHρ A

HR−1Acρ)}
.

Note that R−
1
2Π⊥

R− 1
2 A
R−

1
2 = 1

σ2Π
⊥
A [12, eq. (31)], there-

fore

CRB(δ) =
1

N
· σ2

2<((dHδ Π⊥Adδ)(c
H
ρ A

HR−1Acρ))

=
1

N
· σ2

2(dHδ Π⊥Adδ)(c
H
ρ A

HR−1Acρ)

=
σ2

2N
· 1

dHδ Π⊥Adδc
H
ρ A

HR−1Acρ
, (18)

which concludes the proof.

References
[1] H. Krim and M. Viberg, “Two decades of array signal

processing research: the parametric approach,” IEEE
Signal Processing Mag., vol. 13, no. 4, pp. 67–94, 1996.

[2] S. T. Smith, “Statistical resolution limits and the com-
plexified Cramér Rao bound,” IEEE Trans. Signal Pro-
cessing, vol. 53, pp. 1597–1609, May 2005.

[3] M. Shahram and P. Milanfar, “On the resolvability of
sinusoids with nearby frequencies in the presence of
noise,” IEEE Trans. Signal Processing, vol. 53, no. 7,
pp. 2579–2588, July 2005.

[4] M. N. El Korso, R. Boyer, A. Renaux, and S. Marcos,
“Statistical resolution limit for multiple signals and pa-
rameters of interest,” in Proc. of IEEE Int. Conf. Acoust.,
Speech, Signal Processing, Dallas, TX, 2010, vol. 3.

[5] H. Cox, “Resolving power and sensitivity to mismatch
of optimum array processors,” J. Acoust. Soc., vol. 54,
no. 3, pp. 771–785, 1973.

[6] M. Shahram and P. Milanfar, “On the resolvability of
sinusoids with nearby frequencies in the presence of
noise,” IEEE Trans. Signal Processing, vol. 53, no. 7,
pp. 2579–2585, July 2005.

[7] Z. Liu and A. Nehorai, “Statistical angular resolution
limit for point sources,” IEEE Trans. Signal Processing,
vol. 55, no. 11, pp. 5521–5527, Nov. 2007.

[8] H. B. Lee, “The Cramér-Rao bound on frequency es-
timates of signals closely spaced in frequency,” IEEE
Trans. Signal Processing, vol. 40, no. 6, pp. 1507–1517,
1992.

[9] M. N. El Korso, R. Boyer, A. Renaux, and S. Marcos,
“Statistical resolution limit of the uniform linear cocen-
tered orthogonal loop and dipole array,” IEEE Trans.
Signal Processing, vol. 59, no. 1, pp. 425–431, Jan.
2011.

[10] M. Pesavento E. G. Larsson A. B. Gershman, P. Stoica,
“Stochastic cramer-rao bound for direction estimation in
unknown noise fields,” IEE Proceedings - Radar, Sonar
and Navigation, vol. 149.

[11] K.B. Petersen and M.S. Pedersen, “The matrix cook-
book,” Citeseer, 2006.

[12] A. B. Gershman P. Stoica, E. G. Larsson, “The stochas-
tic CRB for array processing: a textbook derivation,”
IEEE Signal Processing Letters, vol. 8.

[13] G. H. Golub and C. F. Van Loan, Matrix Computations,
Johns Hopkins, London, 1989.

893


