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ABSTRACT

A novel speech enhancement method based on generalized
sidelobe canceller (GSC) and auditory properties is presented.
We show that it is possible to reduce audible speech distor-
tions and preserve residual noise level under system model
uncertainties. It can be done by constraining a speech leak-
age power according to masking effect phenomena. An opti-
mal noise cancellation filter is derived using constrained min-
imization of the residual noise power. We implemented the
GSC structure using a simple delay-and-sum beamformer and
corresponding (delays-dependent) blocking matrix. Finally a
comparative evaluation of the selected methods is performed
using objective speech quality measures. The results show
that the novel method outperforms conventional one provid-
ing lower speech distortions and comparable noise attenua-
tion.

Index Terms— GSC, speech enhancement, beamforming

1. INTRODUCTION

Speech enhancement has been an active area of research for
many years. It arises in a wide range of speech processing
applications including mobile radio devices, speech coding,
speech recognition systems, aids for the hearing impaired. A
traditional objective of the speech enhancement is to reduce
environmental noise while preserving speech intelligibility.
In a context of the multichannel systems the dereverberation
and interference suppression is also expected.

Over the past decades most efforts have been devoted to
the dereverberation and beamforming techniques. The key
idea of the beamforming is to process the microphone ar-
ray signals to listen the sounds coming from only one di-
rection. Particularly the noise reduction can be implicitly
achieved by avoiding ’noisy’ directions. The linearly con-
strained minimum variance (LCMV) algorithm has been orig-
inally proposed by Frost [1] in the 1970s and it is probably the
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most studied beamforming method since then. It minimizes
beamformer output variance subject to the set of linear equa-
tions that ensure a constant gain in a specified listening direc-
tion. The minimum variance distortionless response (MVDR)
method [2] can be considered as a special case of the LCVM
approach. Another popular technique is generalized sidelobe
canceller [3]. The noisy signal domain is split into two or-
thogonal subspaces where the dereverberation and noise sup-
pression can be performed separately. Unfortunately due to
model uncertainties a speech signal leakages to the noise sub-
space which results in increased speech distortions. There are
also other approaches to multichannel speech enhancement
[4], but they don’t consider the dereverberation problem, and
try to recover only reverberant noise-free microphone signal,
thus they are out of scope of this paper.

The proposed system is based on the conventional GSC
beamformer. However we directly assume the presence of the
system model uncertainties and use masking effects to reduce
speech leakage effect. A similar technique has been proved to
be useful in several single channel methods [5] but is rarely
used in a field of the multichannel speech enhancement. It
is observed, that for a given spectral power level, there is a
masking threshold so that any interferer below this threshold
becomes unnoticed. Our proposal is to adjust speech leakage
power below the masking threshold so that the speech distor-
tions are minimized.

2. PROBLEM FORMULATION

Consider an array of N microphones with arbitrary geometry
and single speech source s(t) located inside reverberant en-
closure. The observation signal at nth microphone is given
by:

xn(t) = an(t) ∗ s(t) + vn(t) = yn(t) + vn(t), (1)

where ∗ denote a convolution operator, an is acoustic impulse
response from the source speech signal to the nth microphone
and yn(t), vn(t) are the clean speech and noise components
received at nth microphone.
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The multichannel systems are often implemented in
the frequency-domain using the discrete Fourier transform
(DFT). The samples are processed on frame-by-frame basis
using analysis window of the length Nf . Let Xn(ω), An(ω),
S(ω), Yn(ω) and Vn(ω) denote the DFTs of xn(t), an(t),
s(t), yn(t) and vn(t) respectively (frequency bin indices
are omitted for clarity). For sufficiently large Nf , we can
approximate the model (1) as follows [3]:

x(ω) = a(ω)S(ω) + v(ω) = y(ω) + v(ω), (2)

where

x(ω) = [X1(ω), X2(ω), . . . , XN (ω)]T ,

a(ω) = [A1(ω), A2(ω), . . . , AN (ω)]T ,

y(ω) = [Y1(ω), Y2(ω), . . . , YN (ω)]T ,

v(ω) = [V1(ω), V2(ω), . . . , VN (ω)]T .

(3)

A correlation matrix for an arbitrary vector z(ω) can be de-
fined as follows:

Rzz(ω) = E{z(ω)zH(ω)}, (4)

where E{.} is expectation operator and the superscript H de-
notes conjugate transpose. We also assume that the speech
and noise processes are wide-sense stationary and uncorre-
lated, i.e.: Rxx(ω) = Ryy(ω) +Rvv(ω).

Our aim is to estimate source speech signal S(ω). The
most straightforward way is to apply a linear filter h(ω) to
observation vector x(ω) for each frequency bin:

Ŷ (ω) = hH(ω)x(ω). (5)

Above formula can be viewed as the frequency domain im-
plementation of the finite-impulse-response (FIR) filter. The
derivation of the optimal filter h(ω) depends on some criteria
which we will investigate in the next sections.

3. GENERALIZED SIDELOBE CANCELLER

The GSC approach assumes that the filtering for each chan-
nel can be performed in two orthogonal subspaces. This is
equivalent to the following decomposition:

h(ω) = w(ω)−B(ω)g(ω) (6)

where w(ω) is a fixed beamformer filter of size N , B(ω) is a
blocking matrix of size N × (N −1) that spans the null space
of a(ω) and g(ω) is a noise cancellation filter of size N − 1.

The minimum norm solution for vector w(ω), which re-
sults in distortionless beamformer, is given by:

wa(ω) = a(ω)/||a(ω)||2. (7)

For example, in the case of delay-and-sum beamformer we
have:

a(ω) = [e−jωτ1 , e−jωτ2 . . . , e−jωτN ]T , (8)

where τ1, τ2, . . . , τN are relative delays between micro-
phones.

The choice of B(ω) is not unique and any matrix satis-
fying the condition BH(ω)a(ω) = 0, is able to block the
speech and create noise reference signal. For example, a
proper blocking matrix can be obtained using true channel
transfer-function ratios:

Ba(ω) =


−A

∗
2(ω)

A∗
1(ω)

−A
∗
3(ω)

A∗
1(ω)

· · · −A
∗
N (ω)
A∗

1(ω)

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 . (9)

The objective of the GSC approach is to find optimal noise
cancellation vector g(ω). It can be done by solving the fol-
lowing (unconstrained) optimization problem:

min
g(ω)

E{|wH(ω)v(ω)− gH(ω)BH(ω)v(ω)|2}. (10)

This is equivalent to minimizing average residual noise power
at the GSC output. An explicit solution for (10) is multichan-
nel Wiener filter [3]:

gW(ω) = [BH(ω)Rvv(ω)B(ω)]−1BH(ω)Rv(ω)w(ω). (11)

Recalling the decomposition (6), the output of the GSC beam-
former can be written as follows:

Ŷ (ω) = ŶFBF(ω)− ŶNC(ω), (12)

where

ŶFBF(ω) = wH(ω)x(ω),

ŶNC(ω) = gH(ω)BH(ω)x(ω).
(13)

It is worthwhile to note that computationally efficient, adap-
tive implementations are preferred [3]. However in our exper-
iments we use non-recursive implementation for simplicity.

4. SPEECH LEAKAGE CONSTRAINED METHOD

A major drawback of the GSC beamformer is a high sen-
sitivity to model uncertainties. For example the delay-and-
sum beamformer is reliable in less-reverberant environments.
True channel transfer-functions can be roughly estimated us-
ing second-order statistics [3], [6] but in general it is a difficult
task. Therefore in our approach, we assume a presence of the
estimation errors in the model, explicitly. The output of the
GSC beamformer can be decomposed as follows:

Ŷ (ω) = Ŝ(ω)− ŜN(ω) + V̂ (ω)− V̂N(ω) (14)

where

Ŝ(ω) = wH(ω)a(ω)S(ω),

V̂ (ω) = wH(ω)v(ω),

ŜN(ω) = gH(ω)BH(ω)a(ω)S(ω),

V̂N(ω) = gH(ω)BH(ω)v(ω).

(15)
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are the beamformer speech component, beamformer noise
component, speech leakage and noise reference respec-
tively. If w(ω) 6= wa(ω), the speech component is not
perfectly dereverberated i.e., Ŝ(ω) 6= S(ω). Similarly, if
BH(ω)a(ω) 6= 0, the speech signal leakages to the noise
cancellation loop i.e., ŜN(ω) 6= 0, which usually results in
the cancellation of the speech components at the output of
the GSC beamformer. It is difficult to improve dereverbera-
tion efficiency, however we can minimize the speech leakage
effect at expense of some residual noise increase.

Let’s define average power of residual noise and speech
leakage respectively at the output of the GSC beamformer:

ε2v(ω) = E{|V̂ (ω)− V̂N(ω)|2},
ε2s(ω) = E{|ŜN(ω)|2}.

(16)

Optimization problem for the GSC method can be reformu-
lated as follows:

min
g(ω)

ε2v(ω), subject to: ε2s(ω) = α(ω), (17)

where α(ω) is a some predefined level of the speech leakage
power. The complex Lagrange functional is given by:

L(g(ω), λ(ω)) = ε2v(ω) + λ(ω)[ε2s(ω)− α(ω)]. (18)

Differentiating (18) with respect to g(ω) and equating to zero
we find the solution:

gSLC(ω) = M(ω)−1BH(ω)Rvv(ω)w(ω), (19)

where

M(ω) = BH(ω)[Rvv(ω) + λ(ω)Ryy(ω)]B(ω)

= BH(ω)[(1− λ(ω))Rvv(ω) + λ(ω)Rxx(ω)]B(ω).

The Lagrange multiplier λ(ω) provides a trade-off between
speech leakage and noise reduction. It can be easily verified
that for λ(ω) → ∞ speech leakage power is decreased at
the expense of increased residual noise. If λ(ω) = 0, the
conventional GSC method is obtained.

The simplest approach is to set this parameter to empiri-
cally chosen fixed value. However an optimal (from the per-
ceptual point of view) solution is to find λopt such that the
speech distortion is inaudible and the residual noise is as low
as possible. It can be done by substituting the masking thresh-
old of the clean speech - φm(ω) for α(ω) and solving the op-
timization constraint (17), i.e.:

gH(ω)BH(ω)Ryy(ω)B(ω)g(ω) = φm(ω), (20)

In this way the speech distortions can be effectively reduced.
This situation is also depicted in the Fig. 1. The derivation
of an explicit expression for λ(ω) seems to be a difficult task.
Theoretically it can be done numerically but we found that for
certain cases the solution may not exists or be unstable (i.e.,
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Fig. 1. Speech leakage masking for example speech frame.
The curve estimates (16) are obtained using (19).

when the masking threshold level is very small). Therefore
instead trying to solve (20) explicitly, we propose a subopti-
mal solution:

λ(ω) = λmaxmin(MNR(ω), 1), (21)

where λmax is some limiting factor and

MNR(ω) =
φm(ω)

E{|V̂ (ω)|2}
=

φm(ω)

wH(ω)Rvv(ω)w(ω)
(22)

is the mask to noise ratio. Note that if the noise power
level at beamformer output is below the masking threshold
(MNR(ω) ≥ 1) the noise is not audible, thus there is no need
for noise cancellation and the speech leakage may be mini-
mized as much as possible. Otherwise, if 0 < MNR(ω) < 1,
the noise is audible, thus λ(ω) is scaled proportionally to
the MNR value, giving a better noise attenuation. Also note
that the higher the value of λmax the lower speech distortions.
However since the matrix Ryy(ω) is usually semi-positive
definite, the matrix M(ω) in (19) may be rank deficient, es-
pecially at very high signal-to-noise ratios (SNRs). Therefore
the limiting the Lagrange multiplier improves a numerical
stability of the inverse in (19). In our experiments λmax was
empirically set to 0.25.

Instead of using the MNR one can use a local SNR, but it
is known that the SNR estimate is rather erroneous and says
nothing about masking effects. In general using the masking
threshold is a more robust choice [7]. Most psychoacoustic
models compute φm(ω) by performing some smoothing op-
erations on speech power spectrum. Therefore we estimate
the clean speech power spectral density (PSD), first:

φs(ω) ≈ E{|Ŝ(ω)|2} = wH(ω)Ryy(ω)w(ω). (23)

Then we use (23) as an input for Johnston’s psychoacoustic
model [8]. The correlation matrix of the microphone speech
signal is computed as Ryy(ω) = Rxx(ω)−Rvv(ω).
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Fig. 2. Objective measures for N = 8 microphones: noise attenuation (left), speech distortion (right).

Table 1. Perceptual evaluation using PESQ.

T60 = 33ms T60 = 135ms
SegSNR GSC GSC-SLC GSC GSC-SLC

-10 2.350 2.412 1.797 1.800
-5 2.575 2.648 1.914 1.992
0 2.775 2.847 2.041 2.139
5 2.947 3.006 2.150 2.262

10 3.113 3.165 2.249 2.343
15 3.293 3.356 2.334 2.387
20 3.479 3.566 2.404 2.423

5. EXPERIMENTS

In this section we compare the performance of the conven-
tional GSC beamformer with the proposed speech leakage
constrained approach (denoted as GSC-SLC). The methods
were implemented in MATLAB using overlap-save proce-
dure. The microphone signals are cut into 50% overlapping
frames of size Nf = 1024 samples. Once the signals are
filtered in the DFT domain they are transformed back to time
domain and only last Nf/2 samples are saved. In order to
determine the system performance under model uncertainties
we assumed simple delay-and-sum beamformer (8), thus the
steering vector and blocking matrix were computed using (7)
and (9), accordingly. To efficiently compute the frequency
filters the correlation matrix of the noise signal have to be
estimated. However for comparative purposes we put aside
this problem and compute Rvv(ω) directly from data. In
practice any voice activity detector (VAD) can be used to
update noise statistics in speech pauses only. Similarly we
estimate microphone delays for delay-and-sum beamformer
using an exact value of the direction of arrival (DOA) angle.

Two acoustic environments were simulated: the first one
with absorptive surfaces (T60 = 33ms) and the second one
with reflective surfaces (T60 = 135ms). In both cases we as-
sumed the rectangular enclosure with dimensions 6× 5× 2.8
(all dimensions and coordinates are in meters). We also con-
sidered an uniform linear array of 8 microphones placed on
the x-axis with the first microphone at the position [2.65, 4, 1]
and spacing 0.05. The speech source signals were sampled at
8kHz and located at the position [1, 1, 1.8]. The test material
was comprised of 8 sentences, each about 5s long, uttered
both by male and female (English spoken) speakers. The
white Gaussian noise source was positioned at [5, 2, 2]. The
microphone signals were obtained by convolving the speech
source signal with the room impulse responses and adding to
the corresponding noise signal at different SNRs, according
to model (1).

In the experiments the SNR based measures were used
for an objective performance evaluation. The speech distor-
tion measure (SD) is defined as the segmental signal to noise
ratio where the noise is interpreted as a difference between the
source signal and enhanced speech. The higher the value of
this factor, the better the performance. The amount of noise
reduction was measured using noise attenuation factor (NA)
defined as the mean ratio between the input noise power and
output noise power. Additionally PESQ measure [9] was used
for the evaluation of the speech distortion audibility.

The objective measurement results are depicted in Fig. 2.
The spectrograms of an example enhancement are presented
in Fig. 3. In the case of reverberant environment the proposed
method outperforms conventional one providing lower speech
distortions. In order to avoid overestimation of noise atten-
uation factor, it should be measured in speech pauses only,
however it is rather difficult to precisely mark this regions.
Thus, this factor was estimated also in transients where mean
squared error is substantially lower for the speech leakage

592



Time (s)

F
re

q
u

e
n

c
y
 (

k
H

z
)

Clean signal

0.5 1 1.5 2
0

1

2

3

4

Time (s)

F
re

q
u

e
n

c
y
 (

k
H

z
)

Noisy signal at mic. #1

0.5 1 1.5 2
0

1

2

3

4

Time (s)

F
re

q
u

e
n

c
y
 (

k
H

z
)

Enhanced signal (GSC)

0.5 1 1.5 2
0

1

2

3

4

Time (s)

F
re

q
u

e
n

c
y
 (

k
H

z
)

Enhanced signal (GSC−SLC)

0.5 1 1.5 2
0

1

2

3

4

Fig. 3. Spectrograms for reverberant environment (T60 = 135ms) and noisy speech at SegSNR = 0dB.

constrained method. In fact this measure should be compa-
rable for both methods. On the other hand, it is clear that a
residual noise increase is not proportional to the speech distor-
tion decrease. In our experiments this increase is too small to
be measured. For non-reverberant environment we reported
only minimal improvement. It is not surprising since there
is no model uncertainties, thus speech leakage is very low.
Thus in this scenario the parameter λ(ω) has no impact on
the system performance and the proposed method is equiva-
lent to conventional GSC beamformer. Similar observations
can be made for the PESQ scores (see Tab. 1). Although we
observe lower performance results for the conventional GSC
beamformer for both environment conditions, in the case of
reverberant environment (i.e., presence of the system model
uncertainties) relative improvement is higher.

6. CONCLUSION

The performance of the conventional GSC beamformer can
be improved in the presence system model uncertainties by
using auditory properties. We derived a noise cancellation
filter which is able to reduce the speech leakage (and speech
distortions) at expense of residual noise increase. However as
we show this increase is rather small. In addition it is tolerated
by auditory system as long as the noise level is placed below
masking threshold. The experimental results show that the
proposed method outperforms conventional GSC beamformer
providing lower speech distortions and comparable residual
noise level.

There are some possible improvements of the proposed
method, i.e.: a derivation of an explicit formula for opti-
mal Lagrange multiplier, a recursive implementation of the
frequency filters or an estimation of the steering vector and
blocking matrix using second-order statistics only. These
issues will be considered in the future work.
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