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ABSTRACT

Physiological signals, specially those related to cardiovascular func-
tion, are usually corrupted due to the number of degradation sources
appearing in the acquisition process (noise, movements, etc.). If the
power of these artifacts is close to the power of the signal, they
cannot be removed and the affected epoch must be set aside. In
this paper, we propose a novel methodology for reconstructing cor-
rupted pieces based on signal modelling. The method consists of two
stages: 1) estimation of the model parameters from the largest uncor-
rupted signal and 2) simulation of the model to achieve a new piece
able to replace the corrupted one. Results on real data show that
reconstructed pieces are valid in terms of statistical similarity, yield-
ing anomaly-free realizations of the stochastic process modelling the
acquired signal.

Index Terms— Cardiovascular Signal, Reconstruction, Shape
modelling, PCA, Temporal modelling, ARMA Models.

1. INTRODUCTION

The analysis of cardiovascular signals, such as ECG (electrocardio-
graphy) and PPG (photoplethysmography), was one of the first areas
in medicine where signal processing was applied for diagnostic aid
and follow-up [1]. Nowadays, the contribution of the signal pro-
cessing field to medicine is highly appreciated and interpretation of
cardiovascular signals is rarely based on the own signal, but on ei-
ther magnitudes or new signals resulting from processing (filtering,
delineation, spectral analysis, etc.) the original. Although litera-
ture holds a wide variety of methods for processing these signals,
there still exist some unsolved problems such as the reconstruction
of pieces corrupted with high power noise (due to patient’s move-
ments, for instance). These degenerated pieces are ignored so far,
which implies working with (short) epochs of the signal, instead of
the whole acquisition.

The use of theoretical models allows for the achievement of syn-
thetic signals whose features are similar to those of the one used to
estimate the model. This methodology is frequently applied to pre-
dict the behavior of stocks from economic and financial series [2]. In
this context, quite a few theoretical models —AR (autoregressive),
ARMA (autoregressive moving average), RSM (regime switch mod-
els), etc. [3]— are proposed to this end. Nevertheless, these mod-
els should not be directly applied to physiological signals since the
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Fig. 1. Block diagram for the methodology proposed to bring theo-
retical models of any cardiovascular signal x(t).

premises assumed for financial series (stationarity, etc) can be hardly
complied by physiological signals.

In this paper, we propose a novel model-based methodology for
cardiovascular signal (ECG and PPG) reconstruction. Signals are
first divided in heart beat epochs. The shape of each piece is modeled
by a parametric curve whose parameters (with non stationary evolu-
tion) are considered as univariate ARMA processes after a proper
application of PCA (principal component analysis). The evolution
model is estimated from the uncorrupted largest piece of the origi-
nal signal, and used, together with the initial and the boundary con-
ditions provided by the uncorrupted segments, to synthesize a new
piece to replace the corrupted one.

The paper is organized as follows: section 2 presents the theo-
retical contents, with specific sections describing the signal analysis
(where the modelling methodology is described) and synthesis. Sec-
tion 3 summarizes the experimental evaluation of the method on a
real case along with a discussion on the obtained results. Finally,
section 4 closes the paper by gathering the main conclusions ob-
tained from the developed study.

2. METHODS

Methodology proposed for dealing with the main objective of the
study (recreate a piece of a signal that has been corrupted) consists
of two stages: the estimation of the theoretical model from an uncor-
rupted piece of signal, and the simulation of it to take the place of
the corrupted piece. From now on, the first stage will be referred to
as “analysis”, while “reconstruction” will be used to make reference
to the second one.

2.1. Analysis

Aiming at a better comprehension of the methods presented, this
section is split into two parts: section 2.1.1 gives a deep description
of the model, while section 2.1.2 is devoted to the estimation of the
model from the available uncorrupted data.

2.1.1. Description of the Theoretical Model

Overall, three stages can be identified (see Fig. 1): preprocessing,
shape modelling and temporal modelling. The first stage divides
the original signal into a collection of pieces (one per beat), the
second one represents every beat by means of a parametric curve,
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Fig. 2. Preprocessing task over an ECG signal.

and the last one models the temporal evolution of the parameters
resulting from the second stage. All these stages are described in
what follows.

Preprocessing. One common feature of all cardiovascular signals is
their quasi-periodic behavior due to the action of the heart. On the
basis of this property, these signals can be divided in pieces, each
one corresponding to a beat. This is what the preprocessing stage
does: given a signal x(t), a collection of N pieces {xn(t)}Nn=1,
where n is the ordinal of the corresponding beat, is returned. Fig. 2
shows how pieces corresponding to each beat are separated. To this
aim, we do not specify any particular method; whichever delineation
procedure could be used for each signal (ECG and PPG) indeed.
Additionally, tasks such as filtering and detrending could be also
carried out at this stage if necessary.

Shape modelling. This stage can be also termed as “parame-
trization”, since the elements of the collection resulting from the
preprocessing are modeled by means of a parametric curve. That is,
for 1 ≤ n ≤ N ,

xn(t) = Γ(W[n], t) + r(t), t ∈ T , (1)

where Γ(· , t) is a parametric curve, W[n] ∈ RM is the vector of
parameters for the n−th beat, r(t) is the residue (which will be ob-
viated from now on), and T is the domain of xn(t). Both Γ(· , t)
and W[n] do depend on the signal nature; here, two examples (ECG
and PPG) are presented and summarized in Table 1. The goodness
of fit of the proposed shape models can be qualitatively evaluated in
Fig. 3-(c), (d), where real examples are drawn. The model proposed
for PPG signals is a simplification of the one proposed in [4, 5] for
modelling ECG signals, in which five Gaussian curves are consid-
ered (one per wave). Despite this model was conceived to model
ECG signals, we have not used it, but the Hermite’s interpolation to
deal with this sort of signals. The rationale of that decision lies on
the fact that Gaussian curves cannot cope with the asymmetries of
the complexes forming each beat.

After a careful reading of Table 1, one aspect should be clarified:
why does not the ECG shape model make use of time-warping? The
rationale of this decision lies on the accuracy of the warping land-
marks, which is higher for PPG than for ECG. Little errors in this
step become more critical if warping transformation is carried out.

Temporal modelling. To find out a model of the temporal evolution
for the vector of parameters, two features of W[n], which prevent
from using typical models like those described in [3], must be taken
into account: 1) W[n] can be non stationary and 2) its elements can
be dependent. Bearing in mind these characteristics, the model pro-
posed here, whose block diagram is presented in Fig. 4, consists of
two stages:

1) Decorrelation: The purpose of this stage is to provide a new vec-
tor, Y[n], whose components would be independent in order
to be individually modeled later on. To this end, the PCA
(Principal Component Analysis) transformation [7] has been
used. Hence, Y[n] = H·W[n], where the H ∈ MM×M

ECG

W[n]

Time and amplitude labels resulting from the com-
plete delineation of the ECG —onset, peak and end
of all the waves (P, Q, R, S and T)—. Additionally,
one more label has been located in the middle of ev-
ery slope. Temporal labels are relatives to the time of
the R peak, whilst this one is relative to the time of
the previous R peak. These labels are marked in Fig.
3-(a) as `k.

Γ(· , t) Piecewise Hermite’s interpolation [6] over the `k
labels.

PPG

W[n]

t1 and t2 parameters are the length of the intervals
onset-maximum and maximum-end respectively. m0

and m1 parameters are devoted to model the linear
trend defined by the first and the last point of each
beat. a1, b1, c1, a2, b2 and c2 parameters define two
Gaussian curves. All these parameters can be seen in
Fig. 3-(b).

Γ(· , t)

This curve is formed by a sum of two Gaussian curves
and a linear trend,

γ(t) = a1 exp
[
− (t−b1)2

c21

]
+ a2 exp

[
− (t−b2)2

c22

]
+ m0 +m1t, (2)

which is time-warped in such a way that onset-
maximum and maximum-end durations would take
always their average value (computed over all the
beats): ηt1 and ηt2 .

Table 1. Shape modelling indications for both sorts of cardiovascu-
lar signals.

matrix was estimated over the whole W[n]. This approach
finds its methodological justification on the hypothesis that
the structure of the covariance matrix of W[n] keeps constant
in time.

2) 1-D Temporal modelling: The elements of Y[n], which are non
stationary, are to be modeled at this stage. As literature states,
physiological signals in general and cardiovascular ones in
particular are modulated by the ANS (Autonomous Nervous
System) [1]; hence, variabilities introduced by the sympa-
thetic (long-term variability) and parasympathetic (short-term
variability) systems result in non stationary signals. Striving
to model stationary series, these variabilities have been sep-
arated in two stationary series through a low pass filter (30
samples moving average) —hMA(30)[n]— as follows1:

Yj,T [n] = Yj [n] ∗ hMA(30)[n] (Trend), (3)
Yj,R[n] = Yj [n]−Yj,T [n] (Residue), (4)

where j = 1, · · · ,M denotes the component of the vector se-
ries. Hereafter, each element of Yj,T [n] and Yj,R[n] can be

1This residue should not be confused with the residue of the equation (1),
denoted as r(t).
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Fig. 3. Schemes for the parametrization of ECG (a) and PPG (b)
pieces of one beat. Real examples of the shape model fitting for
ECG (c) and PPG (d) pieces of one beat. Continuous line is the
given by the model. Dashed line represents the original signal.
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Fig. 4. Block diagram of the temporal model. Two stages are identi-
fied.

represented by means of ARMA models, whose expression
for any signal s[n] is

s[n] =

p∑
i=1

ais[n− i] + ε[n] +

q∑
k=1

bkε[n+ k], (5)

where ai and bk are the coefficients of the model, and ε[n] is
the exciting noise —white Gaussian noise N (0, σ2

ε )—. The
order of the model has been fixed to (p, q) = (2, 2) through
some experiments based on spectra similarity assessment.

2.1.2. Estimation of the Model from the Corrupted Signal

Given a signal x(t), acquired for a temporal interval [0, τ ], a cor-
rupted piece is visually detected from to to te. So, signal can be split
in three pieces:

xpre(t) = x(t), 0 ≤ t < to, (6)
xcorr(t) = x(t), to ≤ t ≤ te, (7)
xpost(t) = x(t), te < t ≤ τ. (8)

To estimate the model, the following steps must be followed:
1. The largest uncorrupted piece of x(t) must be used as refer-

ence to estimate the model. That is, xref (t) = xpre(t) if
to > τ − te; xref (t) = xpost(t), otherwise.

2. xref (t) is preprocessed to achieve {xrefn (t)}Nn=1.

3. Vector series Wref [n], n = 1, · · · , N must be computed
from {xrefn (t)}Nn=1 according to the shape models proposed
in the previous section.

4. Parameters of the theoretical model are estimated from
Wref [n], n = 1, · · · , N : the PCA matrix (H), and
those parameters of the ARMA models (ai, bk, σ2

ε ) for
Yref

1,T [n],Yref
1,R [n], · · · ,Yref

M,T [n] and Yref
M,R[n].

2.2. Reconstruction (Synthesis)

The reconstruction stage brings a synthetic piece of signal whose
properties —statistical, spectral, some nonlinear and some clinical
(heart rate, for instance) properties at least— are similar to those of
the corrupted piece without the effects of the degrading procedure.
To this end, the model (previously estimated) is simulated quite a few
times and, posteriorly, the goodness of each simulation is evaluated
to reconstruct the signal with the most appropriate simulation. In
summary, these are the steps to reconstruct the signal:

1. The model was designed to simulate series of parameters, that
is, to generate series lasted a specific number of beats; how-
ever, the exact number of beats that must be simulated to re-
construct the signal cannot be known, since only the tempo-
ral duration of the corrupted piece is available. Therefore, the
number of beats to be simulated is computed according to:

Nb = 2×
⌈
te − to
Tb

⌉
, (9)

where Tb is the average duration of beats from xref (t) and
d·e is the integer part of the argument. We are aware that Nb
is close to the double of the necessary number of beats, but
thanks to this, we can ensure that simulated pieces are not go-
ing to be shorter than te−to. Hence, simulations of the model
must generate Nb beats and use the vectors Ypre

j,T/R[−1] and
Ypre
j,T/R[0] as initial conditions for the ARMA filters (remem-

ber the order of the model was set to (p, q) = (2, 2)). Re-
garding the number of simulations to carry out, a good choice
is 10000, since satisfactory reconstructions can be achieved,
and the procedure does not take more than 2 minutes.

2. Every simulation must be evaluated according to the follow-
ing criteria:

• Temporal error (εtR ): it can be expressed as

εtR =
1

4

4∑
k=1

∥∥∥tMpost[k]− tMsim[k]
∥∥∥ , (10)

where tMpost[k] and tMsim[k] denote the time at which the
maxima of the k-th beat (from the original and the sim-
ulated piece respectively) after te take place (see Fig.
5).

• Amplitude error (εx): mean absolute error of xsim(t)
and xpost(t) during four beats after te (see Fig. 5).
Mathematically, the expression is

εx =
1

t4B

∫ te+t4B

te

‖xsim(t)− xpost(t)‖ dt (11)

1828



· · ·· · ·

t

te
tMpost[1] tMpost[2] tMpost[3] tMpost[4]

tMsim[1] tMsim[2] tMsim[3] tMsim[4]

te + t4B

Fig. 5. Diagram of the methodology for the computation of the
temporal error. The original piece —xpost(t)— is plotted in black,
whereas the green line represents the synthetic piece —xsim(t)—.

• Statistical similarity (WI): for a set of r raters, the
Williams’ Index provides a measurement of how one
rater agrees with the other (r − 1) raters in compari-
son with how they agree with each other [8]. In this
work, we have used the covariance matrix of Wsim[n]
and those of the uncorrupted series (Wpre[n] and
Wpost[n]) as raters, and the inverse of the sum of
the absolute mean error (element by element) between
raters as the agreement magnitude.

Good solutions yield low values of εtR and εx, and high val-
ues ofWI . In next section we give some details about how to
choose the right simulation based on the measurements pro-
posed above.

3. Finally, the reconstructed signal must be computed as fol-
lows:

xRec(t) ' Γ(WRec[n], t) (12)

WRec[n] =


Wpre[n] if 1 ≤ n < n(to)

Wsim[n] if n(to) ≤ n ≤ n(te)

Wpost[n] if n(te) < n ≤ n(τ),

where n(ti) is the cardinal of the beat that happens at ti time2.

3. EXPERIMENTS AND DISCUSSION

For the experiments presented here, two signals (one ECG and one
PPG) have been used. A 25 years old healthy patient (under resting
conditions) has undertaken signal acquisition using an Omicrom FT
Surveyor device (RGB Medical Devices), during 5 minutes, using
250 Hz and 66.67 Hz as sampling rate for ECG and PPG, respec-
tively. These signals which are corruption-free, have been modified
by omitting a piece at random. This has been done with the pur-
pose of comparing the reconstructed and the omitted pieces. Thus,
ECG signal has been corrupted from to = 245.5 s to te = 261 s,
while for PPG, the interval was from to = 236.5 s to te = 253
s. For both signals, models were estimated from the largest piece,
i.e., the piece placed before the beginning of the corruption. Then,
the models were simulated 10000 times, and each simulation was
evaluated according to the criteria presented in section 2.2. Results
from the evaluation are drawn in Fig. 6 where the axes are the three
proposed goodness-of-fit measurements. Among the three criteria,

2In Eq. (12) the residue r(t) (see Eq. (1)) has been ignored. It can be
considered for the xpre(t) and xpost(t) if needed, but for the xsim(t) is not
possible for now, so we have omitted it all over the signal.
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Fig. 6. Evaluation of all the simulations for (a) ECG and (b) PPG
according to the temporal error (εtR ), the amplitude error (εx) and
the statistical similarity (WI).

ECG PPG
Sim. εtR εx WI Sim. εtR εx WI

6302 0.0041 30.4187 0.4427 7648 0.0150 21.3536 1.4750
6950 0.0048 18.4077 0.4407 8428 0.0150 15.6317 1.3540
8268 0.0056 31.1043 0.4483 8135 0.0225 10.3966 1.4723
1719 0.0089 35.2778 0.4312 6987 0.0225 9.3603 1.4739
9900 0.0090 21.2593 0.4396 9913 0.0262 11.5589 1.2681
1720 0.0093 5.9946 0.4130 4702 0.0300 8.8356 1.4715

Table 2. Best 6 simulations, in terms of the temporal error, for both
signals. Optimal simulations have been written in bold face.

temporal and amplitude error are the most important, since they de-
termine how the simulation is in agreement with xpost(t) (boundary
condition). From the signal processing point of view, we have not
found any evidence to give more importance to any error than to
the rest; however, from the clinical standpoint, the temporal error is
more significant, since temporal information is used to generate the
HRV (Heart Rate Variability) signal [1]. Under this argument (εtR
criterium), the best 6 simulations have been summarized in Table 2.
Since the temporal error of the first two rows is quite similar, we
have chosen the simulation of the second row as the optimal one due
to their lower values of εx.

Reconstructions performed with the optimal simulations are
shown in Fig. 7. Reconstructed pieces do not seem anomalous;
long-term and short-term variabilities are still present in the recon-
structed signals. The WI tell us how atypical the reconstructions
provided are. Henceforth, for the ECG signal, the WI of the orig-
inal piece is 0.4181, while for the reconstructed one is 0.4407; for
the PPG signal, the original piece yields 0.9391, whilst the recon-
structed one does 1.3540. This results means that, for ECG, the
reconstructed piece is as atypical as the omitted one; while for PPG,
the reconstructed piece is more common.

Among many important aspects that deserve comments or criti-
cisms, we would highlight the following ones:

• The validity of the model was tested by means of statistical,
spectral and non-linear methods. This fact allows for using
some parameters derived from these signals with clinical pur-
poses. This is beyond the scope of this paper and is not pre-
sented here.

• Regarding the temporal model of the series Yj,T/R[n], not all
of their components have to be necessarily represented by an
ARMA model. In virtue of the PCA transformation, compo-
nents can be sorted by their variance in descending order, so
last components are less significant and, consequently, can be
simply modeled as white noise. After some experiments, we
can state that the last three/four components hardly provide

1829



Corrupted (Omitted) Piece Reconstructed Piece Boundary Condition

235 240 245 250 255 260 265 270 275
50

0

50

100

150

t (s)

x
(t

)

235 240 245 250 255 260 265 270 275
50

0

50

100

150

t (s)

x
(t

)

257 258 259 260 261 262 263 264 265 266 267
50

0

50

100

150

t (s)

x
(t

)

220 225 230 235 240 245 250 255 260 265 270
100

50

0

50

100

150

t (s)

x
(t

)

220 225 230 235 240 245 250 255 260 265 270
100

50

0

50

100

150

t (s)

x
(t

)

250 251 252 253 254 255 256 257 258 259 260
100

50

0

50

100

150

t (s)

x
(t

)

Fig. 7. Corrupted piece, reconstructed piece (with the optimal simulation), and zoom in on the boundary condition for ECG (top row) and
PPG (bottom row).

valuable information, so they can be discarder.

• For the experiments performed in this study, the simulations
of the model have been carried out using initial conditions,
however, these are not present if the corrupted piece is located
at the beginning of the signal. We have simulated this scene
(using random initial conditions) in several experiments,
yielding results similar to those presented here.

• The stochastic nature of the model ensures that if the 10000
simulations are performed several times, the optimal simula-
tion will be (with high probability) different each time. This
can be understood as a drawback, however, this behavior is
coherent with reality.

• The sensitivity of the human eye is greater for amplitude er-
rors than for temporal ones, hence the reader might consider
as optimal any simulation with low amplitude error instead of
the one we have chosen. However, the clinical usability of the
model leads to prioritize the temporal error, since large part
of clinical parameters are related to time instead of amplitude
(heart rate, for instance).

• The human eye is not sensitive to the correlation between
parameters either, however the clinical relevance of this as-
pect is considerable. Since the model has been designed to
conserve these correlations, a criterium based on this fact
has been introduced to choose the optimal simulation: the
Williams’ Index.

• This study focuses on the application of reconstructing signal,
nevertheless, the model can be also used to expand signals in
a similar way.

4. CONCLUSIONS

We have introduced a novel methodology for reconstructing cardio-
vascular signals based on modelling. This methodology consists of
estimating the model from the largest uncorrupted piece of the sig-
nal, simulating the model using the initial and the boundary condi-
tions provided by the uncorrupted pieces and selecting the optimal
simulation according to some criteria of goodness. In spite of the

main contribution of this paper being the methodology for recon-
structing ECG and PPG signals, the own modelling is also a contri-
bution of the authors. Experimental results over manually corrupted
signals have shown that reconstructed pieces are not far from real-
ity, since the main features (statistical, spectral, nonlinear and clini-
cal ones) of the original signal are also present in the reconstructed
piece. On the other hand and for the sake of reality, the stochastic
nature of the model brings the user a wide range of valid solutions.
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