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ABSTRACT

This paper is concerned with the design of optimal linear
precoder for MIMO communication systems with channel
erasures. The erasures are modeled as Bernoulli process with
known probability distribution and are incorporated explic-
itly in design formulation. The linear correlating transform
precoding and redundant multiple channels are used to en-
hance the robustness to erasures, and the linear minimum
mean square error (MMSE) estimation is used to reconstruct
the source signal at the receiver end. The design of optimal
precoder is formulated as minimizing the expected value of
estimation distortion, and the solution is obtained by convert-
ing the nonconvex optimization problem into a convex opti-
mization problem subject to linear matrix inequality (LMI)
constraints. Numerical examples demonstrate the effective-
ness and advantage of the obtained solution in enhancing the
robustness to channel erasures.

Index Terms— Erasure channel, Precoder, MIMO,

MMSE, LMI

1. INTRODUCTION

In transmitting signal over wireless medium, often the trans-
mission is subjected to interference and fading which causes
channel erasures. Though current communication systems are
capable of delivering reliable transmission to many applica-
tions, it is still a question whether the performance is adequate
for the systems (e.g. networked control systems) that require
time critical responses. For example, TCP based communi-
cation protocols overcome the channel erasure by retransmis-
sion of lost packets. But the delay due to retransmission can
has an adverse effect on the system performance.

One of the solutions to the above problem is to introduce
redundancy in transmission by precoding the source signal.
The redundant information transmitted through erasure chan-
nels enhances the robustness to channel loss. In recent years,
there has been a significant research into transmitting redun-
dant information to enhance the reconstruction of source sig-
nal in the event of channel loss [1, 2].

Multiple description coding (MDC) has proven to be an
effective method to recover the source signal after multiple
erasures [3]. In MDC a single data stream is encoded to mul-
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tiple parallel streams such that the information of the source
is spread across the coded descriptions. The encoded data is
transmitted over multiple independent paths, so the receiver
can recover the source even when only one description is re-
ceived.

One approach to MDC is through correlating transform
where the statistical dependencies of the transmitted coeffi-
cients are increased by a linear transformation. The optimal
correlating transform coding for a 2 x 2 coder for a quantized
source is presented in [3, 4]. Though these do not explicitly
consider channel erasure process it is suggested that the in-
crease in cross correlation due to linear precoding enhances
robustness to channel loss. The general case of N x N (IV
sources and N coder outputs) optimal correlation transform
to overcome the channel erasures based on Wiener filter has
been studied in [5]. It has been extended to represent the re-
dundant precoding, i.e. M x N coder (/N sources and M
coder outputs with M > N) in [6] with MMSE estimator at
the receiver for source signal reconstruction. In [6] the re-
dundant precoder is designed by repeating the eigenvectors in
the source covariance. Both the works [5] and [6] propose
using the gradient based computation to design the optimal
precoder. Since the objective functions used in these designs
are nonconvex, this computation method can be problematic
in convergence and efficiency.

Another approach to redundant information transmission
is to expand the source signals by an overcomplete frame and
then transmit the frame coefficients across multiple channels.
This approach uses the dual frame (left pseudo inverse) of
the expansion (analysis) frame at receiver side to reconstruct
source signal, and can achieve perfect reconstruction if the
total channel losses are less than the redundancy of the frame
[7, 8].

In this paper we investigate the design of optimal correlat-
ing transform precoder for MIMO channels with probabilistic
erasures. Similarly to [6], we model the channel erasures as
Bernoulli random process, use the linear MMSE estimation
for source signal reconstruction under erasures, and use the
expected value of estimation distortion as the design objec-
tive function. In contrast to [6], we explicitly incorporate the
MIMO channel model in problem formulation, convert the
nonconvex objective function into a convex objective func-
tion subject to LMI constraints, and hence derive a convex
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optimization based design that can be efficiently and reliably
computed.

The notations of the paper are standard. For a matrix A,
its transpose and trace are denoted by A7 and Tr(A). Iy
denotes the N x N identity matrix.

2. PROBLEM STATEMENT

Figure 1 gives an MIMO communication system with M
transmitters and K receivers, where K > M. The source
signal 2, € RY is a non-white Gaussian vector with zero
mean and covariance E(zz1) = R,. T € RM*¥ js a linear
precoder that encodes the /N dimensional source vector xy, to
M correlated descriptions y, € RM with M > N. Since
M > N, precoding adds redundancy to the transmission.
The coded descriptions are transmitted through M trans-
mitter antennas and received by K receiver antennas. The
communication channel H € RX*M is a constant matrix
with known parameters and full column rank M.

The MIMO channel is subject to erasures. In this work we
assume that the loss of a channel is equivalent to a receiver
failure. That is, the loss of subchannel ¢ results in null output
at the receiver . As a result of channel erasure the decoder re-
ceives L descriptions, with L < K. The matrix P, € REXK
denotes the channel erasure state. P. = I when there are no
erasure events. In an event of erasure the respective rows from
P, are removed to denote the subchannel losses. The number
of received descriptions, L, depends on the channel state at
the time. For K receivers, L € [1,2,--- , K] and hence there
are total 2% channel states. At the receiver the MMSE esti-
mator V., € RN*L reconstructs source signal based on the
signal received after the erasure.

We further assume that the source quantization is suffi-
ciently fine such that the effect of the quantization noise is
insignificant to the signal reconstruction at the receiver. Also
the transmitted coefficients are assumed to be either com-
pletely lost or received without error. The receiver has the
full information of the channel matrix  and the channel state
information P, at each transmission. But the channel and era-
sure information is not available at the transmitter during the
communication.

In the sequel, we will investigate the design of the pre-
coder T and the MMSE estimator V, for the minimization of
signal reconstruction error in the MIMO communication sys-
tem described above.

3. PRECODER DESIGN FORMULATION

From the system in Figure 1 the signal received by the esti-
mator is
ZE = PSHTxk (1)

and the estimator output is

.’fk = Vezk. (2)

There are two possible cases of equation (1) depending on
the descriptions received by the receivers. Case 1: The num-
ber of received descriptions, L, satisfies N < L < K. In
this case, the matrix P, HT is a tall matrix with the column
rank equal to N. Hence, (1) is solvable for x; by taking the
left pseudo inverse of P, HT', and the estimator V, is simply
Vo = (TTHTPIP.HT)'TTHTPT. 1t yields &), = xp
with no reconstruction error. Case 2: The number of received
descriptions L’ < N. In this case, the matrix P.HT is a fat
matrix with the rank equal to L. The equation (1) is no longer
solvable for xj by using the left pseudo inverse of P.HT,
since it does not exist. In this situation we will estimate xy,
using the MMSE estimation described in Appendix.

Since xj has zero mean and covariance R, z; also has
zero mean and covariance R, = P.HTR,TTH TPET . The
cross covariances of xj and z are ) = RQDTTHTPGT and
> .. = P.HTR,. Then by the MMSE estimation method
given in Appendix, the estimate of z; knowing zy, is given by

iy = R,TTH"PY(P,HTR,T"H*P") 2,  (3)
and the MMSE estimator is given by
Vo =R, T"H"PY(P.HTR, T"H" P~  (4)

The covariance and distortion (energy) of the estimation error
are respectively

R.=R,-R,T7"H"PY(P.HTR,T"H" PT)"'P.HTR,
®)

and

D.=Tr|R,—R,T"H" P (P.HTR, T"H" PI) ' P.HTR,].

(6)
Above derivation is for a specific state of channel erasure matrix P,.
Since P. is a stochastic variable that depends on the erasure process,
it can be modeled as a Bernoulli process. Denote A the probability of
a single channel erasure at the receiver, and let w, be the probability
of the channel in a particular (erasure) state. Then w. = NE-L
(1 — A\, where L is the number of received descriptions and L =
1,2,--- | K.

Since the channel can be in different states depending on the era-
sure, the precoder should be designed to address all possible erasure
states. Therefore the expected value of the estimation distortion (en-
ergy of estimation error) is used as the criterion for precoder design.
Excluding Case 1 discussed above, the expected value of distortion
is given by

E E
D=> wexDe=Y wTr[R, — R,T"H' Pl

e=1 e=1

(P.HTR, T"H"P’)"'P.HTR,).
E

=Try we {Rz — R, T"H"PT

e=1

(P.HTR, TT"H" PT )’1P6HTRI} . (7

K K K
where E := 2 —Zj:N( i)
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Fig. 1. System Configuration

Thus the optimal precoder for MMSE estimation can be ob-
tained from the following optimization

E
mjinD: mjinTr{ {Zwe R.—
e=1
R, T"H"P(P.HTR, T"H" P! )’IPCHTRZ.] } )

The optimal precoder 7 that solves (8) is a full column rank matrix.

A problem that affects the solvability of the minimization in (8)
is the scenario of ‘total channel loss’, which is when information on
all the subchannels is lost. Since the erasure matrix P, loses the re-
spective rows corresponding to the lost subchannels in modeling, this
situation will create a null erasure matrix P. and hence the distortion
will tend to infinity. Therefore, (8) will be dominated by the ‘total
channel loss’ scenario. The probability of ‘total channel loss’, A,
is very low relative to other channel states; also, no precoder design
can effectively deal with such scenario. Based on these facts, this
scenario is excluded from the precoder design to give the following
design formulation

min D = min Tr{[\ch—
T T

E
> we {RxTTHTPET (P.HTR,T"H" P )_1P6HTR4 }

e=1
] ©)
. E -
subject to rank[T] = N, where Ac :== ) weand E = FE — 1.
e=1

4. CONVEX EQUIVALENT OF DESIGN OPTIMIZATION

The objective function in (9) is a nonlinear and nonconvex function
of the optimization variable 7', and hence its minimization is a rather
difficult problem. We will present in this section a convex relaxation
approach to solving this nonlinear and non-convex problem.
Let UTU = R, be the Cholesky decomposition of R, and de-
fine
S :=TR,T" (10)

W .

E
> we {UTTHTP;‘F (P.HTR, T"H" P” )’1P5HTUT}

e=1

I
M-

We {UTTHTPET (P.HSH" PT )_1PeHTUT} a1

e=1

Substituting (10) and (11) into (9), the design optimization can be
equivalently written as
Tr{A.R, — U"WU}

min D = min
T T

subject to

B
W=y we {UTTHTPET (P.HSH" P )_lPeHTUT] ,
e=1
S=TR, T, §>0, S=587, wW>0, Ww=w".

Using the convex relaxation [9] and Schur complement [10]

T
S>TR,TT — { s, TU } >0,

Tt In

E
W= we {UTTHTPET (P.HSH" P} )’1PEHTUT} =

e=1

W >

M=

We {UTTHTPET (P,HSH" PT )_1PeHTUT} ,

e=1

the design optimization can be further converted to

min Tr(AcRy — UTWU) + 6sTr(S) 4+ dwTr(W) (12)

subject to
AR, —UTWU >0, W>0, W=WwT, (13)
s TU” >0, $>0, S=57 (14)
UTT IN - Yy - Yy - ]
w VorUTTHTPY Jo,UTTHT PT
VorPPHTUT P HSHTpPT 0
Vw2 PHTUT 0 PHSHT PY
V@pPpHTU™ 0 0
VesgUTTHT PL
0
0 >0 (15)
P;HSH" P
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where ds, 7 > 0 are small positive numbers for reducing the vari-
able slack of W and S. The design optimization (12)-(15) is a stan-
dard convex optimization problem subject to linear matrix inequality
constraints, which can be solved for globally optimal solution by us-
ing the interior point method in MATLAB LMI and CVX toolboxes
[11].

Scaling for maximal power transmission: It can be seen from (9)
that the coefficients of 7' may have arbitrarily small values with-
out affecting the average distortion D. Therefore the transmission
power of the resultant precoder may become very small. To over-
come this problem, one can scale the optimal precoder 7" by o« =
v/ Prx/Pout and use To, = T as the optimal precoder. Here
Prx is the maximal total transmission power physically allowed,
and Poy: = Trly y"] = Tr[TR,T"] is the transmission power
of the precoder 7" obtained from solving (12)-(15). The scaled opti-
mal precoder 75, yields the maximal transmission power physically
allowed. From the second line of (9), it can be readily seen that this
scaling does not affect the distortion D.

5. NUMERICAL EXAMPLE

Example 1 [N = 2, M = 3, K = 3]: Consider the source correla-
tion matrix and the channel matrix

04 07 09
0.6 035 0.2
0.5 0.15 0.45

0.78 0.12

Re = {0.12 0.78} , H=
with the erasure probability A = 0.2. The channel loss states are
PL=[100],P,=[010]and P, = [00 1] for L = 1. For this
channel, an optimal precoder 7' is obtained from the optimization
(12)-(15) with small §s and dy. The optimization is computed using
MATLAB CVX toolbox. The optimal precoder 1" is scaled up to
achieve the maximal total transmission power of 5watt. The scaled
optimal precoder is shown below.

—0.6408
—0.6424

—1.4695
—1.4700] -

T 0.4544
Ta = 0.4532
The optimal precoder T, attains an average distortion of Dy =
0.0634 and equal side distortions of 0.66.

The optimal precoder 7, is compared with the Mercedes-Benz
frame expansion precoder and the uniform length, non-Parseval
frame expansion precoder given in [8], and the results are shown in
Figure 2. The optimal precoder has better performance in general
than the frame expansion precoders. Also, the performance of the
optimal precoder is compared with 50,000 random transform pre-
coders of the same size. As shown in Figure 3, the optimal precoder
T+ always performances better than those of the random precoders.
In contrast to the unpredictable performances of random precoders,
the performance of optimal precoder is always guaranteed by design.

Example 2 [N = 3, M = 4, K = 4]: Consider the source correla-
tion matrix and the channel matrix

04 0.7 09 0.55
0.6 0.35 0.2 0.95
0.5 0.15 0.45 0.8
0.35 0.8 0.55 0.6

R; = [0.12 0.78 0.12

0.54 0.12 0.78

0.78 0.12 0.54
H=

with erasure probability A = 0.2. The channel loss states are P; =
1000,P,=[0100],Ps=[0010], P, =1[000 1]

for L = 1land Ps = [§9930]. Ps = |

1 P, = [1000]

Pe = [0100] p —[0100] p :O L [0001
8 [0010]! 9 [0001]’ 10 [
h

]
?].for L = 2. By

oo

sion power 10watt is obtained

0.7881 1.0404 0.7958  1.0038
TT = [0.1615 0.1478 —0.0059 0.8473
0.8581 1.0380 0.7933  0.9655

The performance of this preocder against 50,000 random precoders
are shown in Figure 4.

Distortion comparison for coders

015

Average Distortion(D)

——— Optimal Coder
P —+— MB-frame

—— Non-Parseval frame
I I I I !

0.1 02 03 0.4 05 06 07 08
Erasure Probability (lambda)

Fig. 2. Comparison with the frame expansion precoder

©  Random coder
er

Number of samples L1t

Average Distortion - D

2 3
Number of samples ot

Number of Samples

Fig. 3. Comparison of 3 x 2 optimal precoder with random
precoders

6. CONCLUSION

A novel method has been presented to design the optimal precoder
for MIMO communication systems subject to channel erasures. The
method is in the form of convex optimization subject to LMI con-
straints, and hence it can be easily computed by the well developed
computation tools, such as the interior point method, in MATLAB
and other convex optimization software. Numerical examples have
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©  Random coder
©  Optimal coder

Average Distortion - D

05 1 15 2 25 3 35 4 45 5
Number of Samples 10t

(a) Average distortion

2 3
Number of Samples 10¢ Number of Samples 104

(b) Side distortion

Fig. 4. Comparison of 4 x 3 optimal precoder with random
coders

demonstrated the effectiveness and advantage of the design method
in enhancing the robustness to channel erasures. Because the design
is dependant on the selection of the weighting factors ds and dw,
the optimal precoder is not unique.

7. APPENDIX (MMSE ESTIMATION)

Conditional PDF of Multivariate Gaussian [12]: Let X and Y be
jointly Gaussian random variables with means Z and § and variances
¥, and ¥, respectively . Let Z = [X'Y"]’, then Z is Gaussian vari-
able with mean and covariance of ( % ) and ( g;: g;z ) respectively.
Then X conditioned on Y = y is also a Gaussian distribution with

mean Z + ., X, (y — 7) and covariance Xpp — Sy 55, Syo

Posterior PDF for Baysian Linear Model [12]: For the observed
data model of y = Hz + w where y € R is the data vector,
H € RN*?is aknown matrix, z € RP is a random vector with prior
PDF N (12, C) and w € RY is a noise vector independent of =

with PDF NV(0, C.,). Then the posterior PDF is Gaussian with mean
po + Co HT(HCLHT + Cy) ™' (y — Hp) and covariance C,, —
C.HT (HC» HT + C’w)leCz. The linear MMSE estimator is the
mean of the posterior PDF and the error variance of the estimator is
the covariance of the posterior PDF.
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