
SUBSPACE HIGH-DENSITY DISCRETE HIDDEN MARKOV MODEL
FOR AUTOMATIC SPEECH RECOGNITION

Guoli Ye, Brian Mak

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

{yeguoli, mak}@cse.ust.hk

ABSTRACT
Compared with continuous density hidden Markov model
(CDHMM), discrete HMM (DHMM) has inherent attractive prop-
erties: it takes only O(1) time to get the state output probability,
and the discrete features, compared with cepstral coefficients, could
be encoded in fewer bits, lowering the bandwidth requirement
in distributed speech recognition architecture. Unfortunately, the
recognition performance of conventional DHMM is significantly
worse than that of CDHMM due to the large quantization error and
the use of multiple independent streams. One way to reduce the
quantization error and to improve the recognition accuracy, is to use
a very large codebook. However, the training data is usually not
sufficient to robustly train such high density DHMM (HDDHMM).
In this paper, we investigate a subspace approach together with sub-
vector quantization to solve the training problem of HDDHMM. The
resulting model is called subspace HDDHMM (SHDDHMM). On
both Resource Management and Wall Street Journal 5K-vocabulary
task, when compared with its CDHMM counterpart, SHDDHMM
shows comparable performance in recognition accuracy, with faster
decoding speed and lower bandwidth requirement.

Index Terms— subspace modeling, subvector quantization,
high-density discrete HMM, semi-continuous HMM

1. INTRODUCTION

For many current ASR systems, CDHMM with Gaussian mixture
model (GMM) as state output distribution, is commonly adopted,
due to its simple parametric form and good generalization ability.
On the other hand, DHMM with discrete density as state output dis-
tribution, which was used in the early stage of speech recognition
history, is almost abandoned nowadays, mainly because its recogni-
tion accuracy is not as good as that of CDHMM.

The unsatisfactory performance of traditional DHMM mainly
arises from two reasons:

• Large quantization error: unlike GMM which has a smooth
probability density function, discrete density imposes hard
partitions in the feature space, with each partition repre-
sented by a codeword. All the different feature vectors falling
into the same partition are quantized into the same code-
word, which inevitably causes quantization error. Due to the
limit of memory, and the amount of training data, traditional
DHMM usually uses a codebook size of 256 to 1024. Such a
small codebook size usually results in large quantization er-
ror, which badly hurts the recognition performance.

This work was supported by the Research Grants Council of the Hong
Kong SAR under the grant number HKUST617008.

• Incorrect stream independent assumption: due to the use of
large feature dimension (e.g., the common 39-dimensional
MFCC vector) in ASR, multiple-stream DHMM is employed
to allow manageable codebook sizes. The inability to model
correlation among streams also limits the performance of
DHMM.

With the advance of computer technology, we would like to re-
visit DHMM to see if some of its limitations could be overcome
nowadays. Compared with CDHMM, DHMM is attractive to us for
the following reasons:

• Fast decoding: in CDHMM, it is found that the Gaussian
likelihood computation may take about 30-70% of the to-
tal recognition time [1]. What is worse, the computation
time grows linearly with the number of Gaussian components.
Large and complex systems usually use a large mixture of
Gaussians per state, thus resulting in a heavy computation
burden in decoding. In DHMM with each state storing a dis-
crete density table, to get the state output probability only
requires a O(1) time table lookup, which is independent of
the table size 1.

• Bandwidth saving in distributed speech recognition (DSR)
systems: DSR systems become more common with the emer-
gence of cloud computing technology. In these DSR systems,
ASR components are distributed between clients and servers.
Speech features may be extracted locally at a client, and then
transmitted to a remote server, where recognition is carried
out. The discrete features used by DHMM could be encoded
in much fewer bits than MFCC features used in CDHMM,
lowering the bandwidth requirement.

In recent years, there is the resurrection of using discrete systems
to model speech [2, 3]. Unlike the unsupervised vector quantiza-
tion methods (e.g., k-means clustering) commonly used in traditional
DHMM, Droppo [2] proposed partitioning the feature space by an
acoustic decision tree using MMI-based purity function at each tree
node. By making use of the class label knowledge, which is not used
in k-means clustering, the resulting discrete system showed compa-
rable performance as that of GMM, but only on a simple frame clas-
sification task.

Teunen and Akamine [3] introduced mixture models and soft de-
cisions to alleviate the quantization error of discrete density. Mixture

1The time for finding the codeword for an input vector in DHMM depends
on the vector quantization (VQ) method. e.g., if the simplest LBG method is
used, finding the codeword takes O(N) time for a codebook size of N ; on
the other hand, if tree VQ is used, it takes O(log N) time. Furthermore, for
an input vector, the codeword only needs to be found once, and then used by
all the active states.

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012 - ISSN 2076-1465 1643

models make use of the smoothing property of ensemble method,
and soft decisions make soft partitions rather than hard partitions.
However, these techniques incur additional computational cost. Fur-
thermore, compared with CDHMM, there was still a 43% relative
increase in word error rate (WER) of the proposed model on WSJ
5K task [3].

In [4], we proposed the high-density discrete hidden Markov
model (HDDHMM) to reduce the quantization error of discrete den-
sity by simply increasing the codebook size. In theory, if the code-
book size is infinitely large, then the quantization error will become
infinitely small. In practice, limited by computational resources, we
need to address the following three problems for HDDHMM:

• requirement of large memory to store the model
• how to find the codeword for an acoustic vector fast?
• lack of training data to train such a high-density model
The first two problems are not as serious as one may think. With

the advance in semiconductor memory and its falling price, large
memory requirement could be easily satisfied nowadays. To find the
codeword for an acoustic vector fast, tree-structured, or subvector-
quantized (SVQ) codebooks could be used instead of linear code-
book. Unlike linear codebook in which the search time for a code-
word grows linearly with the codebook size N , the tree-structured
or SVQ codebooks only take O(log N) time. In this paper, SVQ
codebooks are used.

The lack of training data turns out to be a real challenge for HD-
DHMM with a codebook consisting of tens of thousands of code-
words. For such a large codebook, even with today’s large inventory
of speech corpora, it is still hard to get sufficient training data for
it. In [4], HDDHMM was directly converted from CDHMM without
any retraining. In this paper, we investigate a subspace approach in
which each state output discrete density is treated as a vector, and it
is required to lie in the subspace spanned by a global pool of bases.
The bases are further constrained with the use of SVQ in order to re-
duce the number of model parameters. Consequently, the number of
model parameters in the resulting HDDHMM is greatly reduced and
re-estimation of the model parameters becomes possible. We call
our new HDDHMM “subspace high-density discrete hidden Markov
model” (SHDDHMM).

2. SUBSPACE HIGH-DENSITY DISCRETE HMM

The overview structure of SHDDHMM is shown in Fig. 1. The de-
tails are explained in the following sections.

2.1. Subvector-quantized (SVQ) Codebooks

This section gives an introduction of SVQ codebooks, which are
used by SHDDHMM. To construct the SVQ codebooks, each D-
dimensional acoustic vector xt is split into L subvectors2, xt =
[x1

t ,x
2
t , . . . ,x

L
t]. Subvectors of each split are vector-quantized (by

k-means) to create an SVQ codebook for the split. Let ni denote the
SVQ codebook size of the ith split.

Given a new acoustic vector, it will first be split into L sub-
vectors. The subvector in the ith split is then compared with the
corresponding SVQ codebook to find its SVQ codeword in O(ni)
time. After getting all the L SVQ codewords of an input vector,
its full-space VQ codeword is constructed as the products of SVQ
codewords, one from each of the L splits as:

VQ(xt) ≡ SVQ1(x
1
t) : SVQ2(x

2
t) : · · · : SVQL(xL

t),

2When L = D, the SVQ codebooks become SQ codebooks used in [4].

t

Split into L subvectors

1t

n1

Get SVQ codewords

1
1t

t 1
1t 2

2t L Lt

Lt2t

n2

L
nL

2
2t L Lt

 Construct VQ codeword

pi

i t

b1 bMb3b2

State i

+ ciM
ci3ci2ci1

pj

State j

+

cjMcj3cj2

cj1

j t

Get state output probability

Fig. 1. SHDDHMM architecture overview. The shaded ellipse rep-
resents the global pool of bases, spanning the subspace. Each state
output discrete density table (i.e., pi, and pj), lies in the subspace.
The state-dependent weights (the dotted lines) and the global pool
of bases (the shaded ellipse) are temporary parameters, which only
exist during model training; the final model only stores pi and pj .

where VQ(·) and SVQi(·) represent the VQ codeword given the full-
space acoustic vector and the SVQ codeword in the ith split given
the acoustic subvector in that split respectively. Notice that although
SVQ is employed, it is only used to efficiently index a VQ codeword
in the original full-space through the combinatorial effect of per-split
SVQ codewords.

Since construction of full-space codeword from SVQ codewords
would take no time, the time to get the full-space codeword for a
given input is determined by the cost to find the L SVQ codewords,
which is (

∑L
i=1 ni). Thus, by exploiting SVQ codebooks, finding

codeword for an input vector is significantly quicker than that of
the linear VQ codebook with the same codebook size, which takes
O(

∏L
i=1 ni) time. Finally, the constructed full-space codeword is

used as an index to get the state output probability by a table lookup,
which takes only O(1) time.

2.2. SHDDHMM with Constrained Bases

Like DHMM, SHDDHMM usually has multiple streams. For sim-
plicity, we only discuss SHDDHMM with one stream in this section.
It should be easy to extend it to multiple streams.

2.2.1. Basic Structure

The basic structure of SHDDHMM could be simply written as:

pj(VQ(xt)) =
M∑

m=1

cjmbm(VQ(xt)) (1)

1644

where j is an HMM state; pj is the output discrete density table of
state j with pj(·) being the discrete density function; b1, · · · ,bM

are a pool of M discrete density tables shared globally by all the
states; cj1, · · · , cjM are the state-dependent weights, satisfying the
constraint that

∑M
m=1 cjm = 1. By viewing a discrete density table

as a vector, the vector pj ∈ �N thus lies in the subspace spanned
by M bases b1, · · · ,bM

3. We call it “subspace” as the number
of bases M in the model is usually significantly smaller than the
dimension N of vector pj , which is the discrete density table size or
codebook size.

Since the codebook size N (i.e., the length of each basis vector)
in SHDDHMM is usual very large (tens of thousands), even if we
use the subspace representation, there are still too many parameters
in the system. Thus, similar as in [5], we made the assumption that:
the SVQ codewords of different subvectors are conditionally inde-
pendent given the basis. This assumption imposes a constraint on
each basis as:

bm(VQ(xt)) =

L∏
i=1

bi
m(SVQi(x

i
t)) (2)

where b1
m ∈ �n1 , · · · ,bL

m ∈ �nL are the SVQ discrete den-
sity tables in split 1 to L respectively, which are used to construct
the original basis bm ∈ �N . Thus, the “real” parameters in SHD-
DHMM with constrained bases are cjm’s and bi

m’s, which have sig-
nificantly fewer number of parameters compared with the original
system parameters pj’s.

Let us use an example to illustrate the reduction of system pa-
rameters in the proposed model. Let I = 3132 be the number of
states in our tied-state system, M = 1024 be the number of bases,
L = 2 so that a feature vector is split into 2 subvectors, and the SVQ
codebook sizes for them are n1 = 256 = n2 = 256 respectively.
Thus, the equivalent full-space codebook size, N ≡ n1 × n2 =
65536. In the original system, there are I states, each with a dis-
crete table of size N , giving a total of NI = 205, 258, 752 pa-
rameters! On the other hand, in the proposed model, there will
be only MI = 3, 207, 168 parameters for the weights cjm’s, and
M(n1 +n2) = 524, 288 parameters for the constrained bases bi

m’s,
resulting in a total of 3,731,456 model parameters, which is 55-fold
reduction compared with the original system.

Notice that the weight parameters cjm’s and the basis parame-
ters bi

m’s only exist during the training stage, which make training
with limited amount of data feasible. After training, we use these
parameters to compute the state output discrete densities pj’s by
Eqn.(1) and (2). Finally, we discard the weights and basis param-
eters, and only store the state output discrete densities. Thus, the
final SHDDHMM for decoding has the same architecture of tradi-
tional DHMM, but just with a much larger codebook. In other words,
the attractive properties of DHMM are naturally inherited by SHD-
DHMM (e.g., it takes only O(1) table lookup to get the state output
probability).

2.2.2. Connection with Other Models

SHDDHMM shares some resemblance with the semi-continuous or
tied-mixture HMM (SCHMM). As a result, many techniques devel-
oped for SCHMM, such as adapting mixture weights for speaker
adaptation [6], are also applicable to SHDDHMM. Despite the simi-
larity, there are two key differences between the two models. Firstly,

3Strictly speaking, due to the constraint on cjm’s, pj only lies in part of
the subspace spanned by bases b1, · · · ,bM .

SHDDHMM is a discrete model, while SCHMM is a continuous
model. Secondly, unlike SCHMM, the density pool and state-
dependent weights of SHDDHMM only exist during the training
stage. The final SHDDHMM for decoding only stores the state out-
put discrete densities, and discards the pool and mixture weights.

The subspace concept of SHDDHMM also has some connec-
tion to the recently proposed subspace Gaussian mixture model
(SGMM) [7], except that SGMM uses subspace technique to derive
means of the state, while SHDDHMM uses it to generate the state
output discrete table.

SHDDHMM is also related to subvector-quantized discrete mix-
ture HMM (DMHMM) [5], which also uses subvector partition.
However, in the final model, for each state, DMHMM still keeps
a mixture of discrete tables, while SHDDHMM only stores a sin-
gle discrete table. As a result, to get the state output probability
during decoding, DMHMM needs to evaluate each discrete mixture
and sum up their probabilities, while SHDDHMM only takes one
table lookup in O(1) time, irrespective of the number of mixtures.
Furthermore, the subspace technique to reduce parameters in SHD-
DHMM is not utilized in DMHMM.

2.3. Training of SHDDHMM

Instead of flat-start training, a 1-stream SHDDHMM with M bases
is first initialized from SCHMM, and is then reestimated. The basic
steps of generating SHDDHMM are listed:

STEP 1: A 1-stream SCHMM with a global pool of M diagonal-
covariance Gaussians is first trained.

STEP 2: Initialization of SHDDHMM: The mixture weights cjm’s
of SHDDHMM are copied from SCHMM. The SVQ dis-
crete density tables bi

m’s of SHDDHMM are initialized using
SCHMM as:

bi
m(l) =

∑
t:SVQi(x

i
t)=l γt(m)

∑T
t=1 γt(m)

(3)

where l is a SVQ codeword, bi
m(l) is the probability value from

the entry indexed by l of SVQ discrete table bi
m, γt(m) is the

posterior probability of observation xt belonging to mixture m at
time t given the SCHMM and the training observation sequence
x1, · · · ,xT .

STEP 3: Retraining of SHDDHMM: The updating of SVQ discrete
density tables in SHDDHMM uses exactly the same Eqn.(3),
except that the posterior probability γt(m) is based on SHD-
DHMM of the previous iteration, rather than SCHMM. SHD-
DHMM weights cjm’s are also updated. This step is usually run
for a few iterations.

STEP 4: Generation of final SHDDHMM: After the reestimation
is complete, the state output discrete densities pj’s are computed
using the weights cjm’s and SVQ discrete tables bi

m’s by Eqn.(1)
and (2). The final SHDDHMM only stores the state output dis-
crete densities, and discards the weights and SVQ discrete tables.

3. EXPERIMENTAL EVALUATION

The proposed SHDDHMM was evaluated on Resource Management
(RM) and Wall Street Journal (WSJ) databases. For both databases,
the conventional 39-dimensional MFCC vectors (with energy, delta,
and delta-delta) were extracted.

1645

Table 1. Baseline model performance (WER) on WSJ SI-84

System (Task) CDHMM DHMM SCHMM
SI-84 (Nov’92 5K closed) 4.46% 7.90% 4.82%

The RM systems used the standard SI-109 training data, and
were tested on Feb’89 and Feb’91 test set, with the standard word-
pair grammar. The WSJ systems were trained using the WSJ0 SI-84
training data with 7,138 utterances, and evaluated on the Nov’92 5K
closed vocabulary task, together with the standard 5K-word trigram
language model. For each task, a development data set was set out
to tune system parameters. All systems used cross-word triphones.

The HTK software was modified for SHDDHMM training and
decoding. All experiments were run on a Linux machine with a
3GHz CPU and 4GB RAM. All recognition results are shown in
word error rate (WER). The discussion will focus mainly on the WSJ
task; for RM experiments, only the final WERs are reported.

3.1. Baseline Model Performance on WSJ SI-84

For SI-84, SHDDHMM was compared with 1-stream CDHMM, tra-
ditional 4-stream DHMM, and 4-stream SCHMM. The standard 4
streams were adopted in our 4-stream models: the 4 streams consist
of the 12 static MFCCs, 12 ΔMFCCs, 12 ΔΔMFCCs, and the 3 en-
ergies respectively. All models had 3,132 tied states. The CDHMM
had 16 mixture components per state. The 4-stream DHMM had
512 codewords for each MFCC stream, and 256 codewords for the
energy stream. Finally, the 4-stream SCHMM, which was used to
initialize the SHDDHMM, had 1,024 tied mixtures per stream; only
the top 128 Gaussians were used for its decoding (we found in the
experiments that top 128 Gaussians for decoding in SCHMM is a
good trade-off between accuracy and speed). For each model, we
tried out best effort to figure out its optimal setting.

All the baseline model results are shown in Table 1. These re-
sults are comparable to others in the literature for the same task.
As expected, compared with CDHMM, DHMM has a significant
degradation in the recognition performance. SCHMM is close to
CDHMM in WER, with only 0.36% absolute degradation.

3.2. Subvector-partition and Bit-allocation Schemes

4-stream SHDDHMMs of different subvector-partition and bit-
allocation schemes were initialized from SCHMM. For fair compari-
son, all the SHDDHMMs had the same total number of bits for each
stream, which were 16, 16, 16 and 15 respectively (i.e., the code-
book size for stream 1 to 4 was 216, 216, 216 and 215 respectively,
which resulted in a model size of roughly 1G bytes). We came up
with these codebook size by considering both the memory and train-
ing data limit of our system. It can be seen that the codebook size of
SHDDHMM is significantly larger than traditional DHMM, which
was only 29, 29, 29 and 28 for each of the four streams.

Three subvector-partition and bit-allocation schemes used in the
experiment are depicted in Table 2, with each of the last 3 columns
representing a scheme. Each scheme describes a different subvector
partition and its corresponding bit allocation gives the best WER of
that partition 4. The notation of the scheme in Table 2 is explained

4We did not exhaust all possible bit allocations. Instead, we use the
heuristic of putting more bits to the lower-order MFCCs, making use of the
fact that the lower-order MFCCs are more important for recognition task.

Table 2. Different subvector-partition and bit-allocation schemes for
4-stream SHDDHMM

Streams Scheme s1 Scheme s2 Scheme s3
Stream 1 [1(2)]4[1(1)]8 3(6)3(4)[3(3)]2 6(9)6(7)
Stream 2 [1(2)]4[1(1)]8 3(6)3(4)[3(3)]2 6(9)6(7)
Stream 3 [1(2)]4[1(1)]8 3(6)3(4)[3(3)]2 6(9)6(7)
Stream 4 [1(5)]3 [1(5)]3 [1(5)]3

Table 3. Performance of SHDDHMM with different subvector-
partition and bit-allocation schemes on WSJ SI-84

Scheme WER (Reestimation?)
no yes

s1 6.82% 6.11%
s2 5.62% 5.32%
s3 5.53% 4.89%

as follows. The basic building block is w(b), where w is the sub-
vector dimension, and b is the number of bits allocated to the sub-
vector. And [w(b)]C is equivalent to w(b) · · ·w(b)︸ ︷︷ ︸

C in total

. For example, in

scheme s2, stream 1 (consisting of 12 static MFCCs) was split into
four 3-dimensional subvectors, and 6 bits were allocated to the first
subvector, 4 bits were allocated to the second subvector, and 3 bits
were allocated to each of the last two subvectors.

In general, the subvector dimension increases from scheme s1
to s3. We did not try subvector dimensions larger than the one in
scheme s3, because the time of finding codewords increases signifi-
cantly after that. (In the extreme case, SVQ becomes full-space VQ,
and the time of finding codewords will be O(N) where N is the size
of the full-space VQ codebook.)

3.3. Effects of Schemes and Re-estimation on WSJ SI-84

Table 3 lists the SHDDHMM results with the three different
subvector-partition and bit-allocation schemes. For reestimation, the
column labelled with “no” gives results of the model that was initial-
ized from an SCHMM without any reestimation, whereas the column
labelled with “yes” gives the results of the final reestimated SHD-
DHMM. From the table, we observe that:

• From scheme s1 to s3, the WER keeps dropping. As ex-
pected, the performance is usually better when the subvec-
tor dimension is larger, as larger dimension results in smaller
quantization error in full space.

• Initialization of SHDDHMM from SCHMM is effective (i.e.,
even without reestimation, the model is reasonably good),
which provides a good starting point for reestimation.

• For each scheme, model reestimation always reduces the
WER significantly.

3.4. Recognition Accuracy of Various Systems

Besides the WSJ task, we also tested the various modeling methods
on the RM task. The RM models consisted of 1,589 tied states. The
CDHMM had 6 mixtures per state, and the SCHMM had 512 tied-
mixtures per stream. Their SHDDHMM counterpart was built in a

1646

Table 4. Model performance (WER) on RM and WSJ

System (Task) CDHMM SCHMM SHDDHMM
RM (Feb’89) 2.85% 2.77% 2.66%
RM (Feb’91) 2.94% 2.94% 2.98%

WSJ SI84 (Nov’92 5k) 4.46% 4.82% 4.89%

procedure similar to the one used in the WSJ task. Table 4 compares
their performances on both RM and WSJ.

It is observed that, for each task, the performance of SHD-
DHMM is similar to that of its SCHMM counterpart. Since
SCHMM could be viewed as a continuous version of SHDDHMM,
it shows that the quantization error inherent in a discrete model is
largely alleviated in SHDDHMM. On the WSJ task, the performance
of both SCHMM and SHDDHMM is slightly worse than that of
CDHMM. The small performance degradation is probably due to
the incorrect stream independence assumption underlying SCHMM
and SHDDHMM. However, all the degradations are not statistically
significant (according to the NIST matched pair sentence segment
word error test with confidence level 0.95).

It is also worth pointing out that the performance difference be-
tween our SHDDHMM and CDHMM is smaller than some recently
proposed discrete models (e.g., [3]) on a similar task. Since many
techniques were tried in [3] to reduce the quantization error in var-
ious discrete models using traditional codebook sizes, and yet the
performance of the resulting discrete models were still incompara-
ble with their CDHMM counterparts, we believe that it is important
to build DHMM with a large codebook in order for it to perform
comparably with CDHMM.

3.5. Computation Time on WSJ SI-84

By fixing the number of tied states, we investigated the likelihood
computation time for both CDHMM and SHDDHMM. The compu-
tation time ratio between the two models is found to be 40:1; it in-
dicates that 98% of GMM computation was cut by SHDDHMM, as
the latter only needs O(1) table lookup time to get likelihood. This
figure is larger than most other fast GMM computation techniques.
E.g., In [8], Chan implemented a set of fast GMM computation tech-
niques and found that 80% cut-off was an empirical upper bound.

Operating curves of various SI-84 models were obtained by
changing the beam width during Viterbi decoding, and they are com-
pared in Fig. 2. The results show that SHDDHMM performs better
than SCHMM and conventional DHMM. Compared with CDHMM
with the same WER, SHDDHMM cuts the decoding time by 25%
in most part of the operating curve. The 25% speedup is quite sub-
stantial because in our CDHMM system, the Gaussian computation
takes at most 27%5 of the total recognition time.

3.6. Bandwidth Saving

The conventional acoustic vectors in CDHMM consist of 39 MFCC
coefficients, each of which is represented by a 4-byte float. Thus,
4 × 39 = 156 bytes are used to encode a frame of MFCC coeffi-
cients. In contrast, the codeword in each stream of our 4-stream

5In our experiments, HDecode (in HTK) was used for decoding with
block caching mechanism, which caches the state output likelihoods and
saves Gaussian computation time. As a result, in our WSJ CDHMM sys-
tem, when computing the time ratio between GMM computation and the total
decoding for different beam widths, the maximum ratio is found to be 27%.

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Re
co

gn
itio

n
Er

ro
r R

at
e

(%
)

x Real Time

1-stream-16-mix CDHMM
4-stream-1024-mix SCHMM

4-stream DHMM
4-stream-s3 SHDDHMM

Fig. 2. Operating characteristics of various SI-84 models (finding
codeword time is included for discrete models)

SHDDHMM is represented by a 2-byte unsigned short integer. As a
consequence, only 2 × 4 = 8 bytes are used to encode the discrete
features in a frame, resulting in a 20-fold saving of bandwidth in
DSR systems. Even for systems which only transfer the 13 static
MFCCs and construct the full 39-dimensional MFCC vectors at the
server side, the SHDDHMM feature could still result in a 6.5-fold
saving of bandwidth.

4. CONCLUSION & FUTURE WORK

In this paper, we proposed to reduce the quantization error of
DHMM with a very large codebook. Subspace modeling technique
with constrained bases is applied to reduce the number of model pa-
rameters so that re-estimation of such high-density model becomes
feasible. On both RM and WSJ 5K task, the proposed SHDDHMM
gets similar recognition performance as that of its CDHMM counter-
part, with faster decoding speed and lower bandwidth requirement.

Further directions involve generalizing the model to larger tasks,
where the size of SHDDHMM is expected to be even larger.

5. REFERENCES

[1] M. J. F. Gales et al., “State-based Gaussian selection in large vocabulary
continuous speech recognition using HMMs,” in IEEE Trans. on SAP,
vol. 7, pp. 152–161, 1999.

[2] Jasha Droppo et al., “Towards a non-parametric acoustic model: an
acoustic decision tree for observation probability calculation,” in Proc.
of Interspeech, Sept, 2007.

[3] J. Ajmera and M. Akamine, “Decision tree acoustic models for ASR,”
in Proc. of Interspeech, Sept, 2009.

[4] Brian Mak et al., “High-density discrete HMM with the use of scalar
quantization indexing,” in Proc. of Eurospeech, Sept 2005.

[5] V. Digalakis et al., “Efficient speech recognition using subvector quan-
tization and discrete-mixture HMMs,” in Computer Speech and Lan-
guage, vol. 14, pp. 33–46, 2000.

[6] X. Huang and K. F. Lee, “On speaker-independent, speaker-dependent,
and speaker-adaptive speech recognition,” in IEEE Trans. on SAP, vol. 1,
pp. 150–157, 1993.

[7] Daniel Povey et al., “Subspace Gaussian mixture models for speech
recognition,” in Proc. of ICASSP, Mar 2010.

[8] Chan, A. et al., “Four-layer categorization scheme of fast GMM com-
putation techniques in large vocabulary continuous speech recognition
systems,” in Proc. of ICSLP, 2004.

1647

