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ABSTRACT

In this paper, we propose a robust sparsity-aware adaptive fil-
tering algorithm under impulsive noise environment, by us-
ing the Huber loss function in the frame of adaptive proximal
forward-backward splitting (APFBS). The APFBS attempts
to suppress a time-varying cost function which is the sum of
a smooth function and a nonsmooth function. As the smooth
function, we employ the weighted sum of the Huber loss func-
tions of the output residuals. As the nonsmooth function, we
employ the weighted !1 norm. The use of the Huber loss func-
tion robustifies the estimation under impulsive noise and the
use of the weighted !1 norm effectively exploits the sparsity
of the system to be estimated. The resulting algorithm has
low computational complexity with order O(N), where N is
the tap length. Numerical examples in sparse system identi-
fication demonstrate that the proposed algorithm outperforms
conventional algorithms by achieving robustness against im-
pulsive noise.
Index Terms— Sparse system identification, Huber loss

function, Robust adaptive filtering algorithm, Parallel projec-
tion algorithm

1. INTRODUCTION

In real-world adaptive filtering applications, it is well known
that an impulsive noise can deteriorate the performance of al-
gorithms significantly, for example, in double-talk situations
in echo cancellation [1, 2, 3, 4, 5, 6, 7]. Hence, it is desired
that adaptive filtering algorithms can estimate precisely and
robustly not only under a Gaussian noise but also under an im-
pulsive noise. On the other hand, recently, there has been an
increased interest in developing adaptive filtering algorithms
which exploit the sparsity of the unknown system in its esti-
mation [8, 9, 10, 11, 12, 13, 14, 15]. The goal of this paper
is to propose a robust sparsity-aware adaptive filtering algo-
rithm.

In order to achieve robustness against impulsive noise in
adaptive filtering, the well-known Huber loss function [16,
17] has been utilized [1, 2]. The Huber loss function behaves
as a quadratic function for small values and as absolute value
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function for large values. The absolute value function lim-
its the impact of impulsive noise on the performance of the
adaptive filtering compared to a quadratic function which is
used in standard least square scenarios. It has been reported
that the use of the Huber loss function improves robustness
compared to other filters employing a quadratic function in
adaptive filtering [1, 2].

Meanwhile, the Adaptive Proximal Forward-Backward
Splitting (APFBS) scheme has been introduced [12, 13, 14,
15] to develop sparsity-aware adaptive filtering algorithms.
The APFBS scheme attempts to suppress a time-varying
cost function which is a sum of one smooth convex function
(typically used as the data fidelity term) and one nonsmooth
convex function (typically used as the sparsity-promoting
term). By utilizing a weighted sum of squared distance func-
tions as the data fidelity term, the APFBS reproduces many
conventional algorithms, for example, Normalized Least-
Mean-Square (NLMS) [18] and Affine Projection Algorithm
(APA) [19, 20], to name a few. Moreover, for the sparse
system identification, the APFBS with the use of weighted !1
norms can effectively promote the sparsity of the system to
be estimated and achieve excellent estimation accuracy.

In this paper, we propose the concurrent use of weighted
sum of the Huber loss functions of the output residuals as the
data fidelity term and the weighted !1 norm as the sparsity-
promoting term in the frame of the APFBS. A cost function
similar to the proposed data fidelity term was used in a ro-
bust adaptive filtering scenario [1]. The resulting algorithm
simultaneously achieves both of robustness against impulsive
noise and excellent estimation accuracy compared with cer-
tain conventional algorithms. The proposed algorithm is the
composition of the weighted average of the relaxed projec-
tions onto certain multiple hyperplanes and the adaptively
weighted soft-thresholding which is the proximity operator
[24] of the weighted !1 norm. The proposed algorithm has
low computational complexity with order O(N), where N is
the tap length. We also present an explicit value of the Lips-
chitz constant of the gradient of the Huber loss function of the
output residual. This value is necessary at each iteration of the
proposed algorithm. Moreover, the proposed algorithm cov-
ers Robust Variable Step-Size NLMS (RVSS-NLMS) [6] as
its simplest case. Numerical examples for the sparse system
identification demonstrate that the proposed algorithm out-
performs the conventional algorithms by achieving robustness
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Fig. 1. Adaptive filtering scheme.

against impulsive noise.

2. PRELIMINARIES

2.1. Adaptive filtering problem

Let R and N denote the sets of all real numbers and nonnega-
tive integers, respectively. Denote the set N \ {0} by N∗ and
transposition of a matrix or a vector by (·)T .

Suppose that we observe an output sequence (dk)k∈N ⊂
R (i.e., dk ∈ R, ∀k ∈ N) that obeys the following model:

dk = uT
k h∗ + vk,

where k ∈ N denotes the time index, uk := [uk, uk−1, . . . ,
uk−N+1]T ∈ RN a known vector defined with the input se-
quence (uk)k∈N ⊂ R (where N ∈ N∗ is the tap length),
h∗ ∈ RN the unknown system to be estimated (e.g., echo
impulse response), and vk ∈ R the noise process. In addition,
we define the estimation residual function ek : RN → R for
k ∈ N by ek(h) := uT

k h − dk, h ∈ RN .
Throughout this paper, we assume that the noise sequence

is generated as vk = nk + ηk, where nk is a Gaussian noise
and ηk is an impulsive noise. Moreover, we suppose thath∗ ∈
RN is sparse, i.e., few coefficients are significantly different
from zero (active coefficients) and most coefficients are zero
or near-zero (inactive coefficients).

A major goal of adaptive sparse system identification is
to approximate the unknown system h∗ by the adaptive filter
hk ∈ RN with the knowledge on (ui, di)k

i=0 together with a
priori knowledge on the sparsity of h∗.

2.2. Adaptive proximal forward-backward splitting [12,
13, 14, 15]

Define the time-varying cost function Θk : RN → (−∞,∞]
for k ∈ N by

Θk(h) := ϕk(h) + ψk(h), (1)

where ψk ∈ Γ0(RN )1 and ϕk : RN → R is a smooth convex
function with its gradient ∇ϕk Lipschitz continuous: there
exists some Lk > 0 (which is called a Lipschitz constant)
such that

‖∇ϕk(h)−∇ϕk(g)‖≤Lk‖h − g‖, (2)
1Γ0(RN ) is the class of all lower semicontinuous convex functions from

RN to (−∞,+∞] that are not identically +∞ [22].

for all h, g ∈ RN , where || · || stands for the standard Eu-
clidean norm. Typically, ϕk plays the role of a data fidelity
term and ψk plays the role of a penalty term that exploits
the sparsity of h∗ in the learning process (e.g. weighted !1
norms).

To suppress the time-varying function Θk in an online
fashion, we utilize the Adaptive Proximal Forward-Backward
Splitting (APFBS) method [12, 13, 14, 15].

Algorithm 1 (APFBS) For an arbitrarily chosen h0 ∈ RN ,
generate a sequence (hk)k∈N ⊂ RN by

hk+1 := prox µk
Lk

ψk

(

hk −
µk

Lk
∇ϕk(hk)

)

, (3)

where µk ∈ (0, 2) is the step-size and prox µk
Lk

ψk
: RN → RN

defined by

proxµk
Lk

ψk
(h) := arg min

g∈RN

(

ψk(g) +
Lk

2µk
||h − g||2

)

is called the proximity operator of ψk of index µk

Lk
> 0.

Note that Algorithm 1 is a time-varying extension of the prox-
imal forward-backward splitting method [22, 23]. Algorithm
1 satisfies the (strictly) monotone approximation property
[21]:

∥

∥hk+1 − h∗
Θk

∥

∥ <
∥

∥hk − h∗
Θk

∥

∥ (4)
for every h∗

Θk
∈ Ωk := arg min

h∈RN

Θk(h) if hk /∈ Ωk *= ∅.

3. PROPOSEDMETHOD

We propose a robust sparsity-aware adaptive filtering algo-
rithm in the frame of Algorithm 1 by employing a weighted
sum of Huber loss functions as the data fidelity term and a
weighted !1 norm as the sparsity-promoting term. That is, we
propose to use



















ϕk(h) :=
∑

i∈Ik

wiρ
(i)
k (ei(h)),

ψk(h) := λ
N

∑

j=1

ω(k)
j |hj |

(5)

in (1). The function ϕk is a weighted sum of the compo-
sition of estimation residual functions and Huber loss func-
tions, where Ik ⊂ {0, 1, . . . , k − 1, k} is the set of indices of
the estimation residual functions, the weights w(k)

i ∈ (0, 1]

(i ∈ Ik) satisfy
∑

i∈Ik
w(k)

i = 1, and ρ(i)
k : R → R is the

well-known Huber loss function defined by

ρ(i)
k (x) =

{

1
2x2 if |x| ≤ δ(i)

k

δ(i)
k |x|− 1

2 (δ(i)
k )2 otherwise

(6)

with the cut-off value δ(i)
k > 0. Note that a cost function sim-

ilar to ϕk was used in a robust adaptive filtering scenario [1].
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The function ψk is a weighted !1-norm with weight ω(k)
j >

0 (j ∈ {1, 2, . . . , N}), where λ > 0 is the regularization pa-
rameter.

The use of ϕk and ψk of (5) in Algorithm 1 leads to the
following adaptive filtering algorithm.

Algorithm 2 (Proposed robust sparsity-aware algorithm)
For an arbitrarily chosen h0 ∈ RN , generate a sequence
(hk)k∈N ⊂ RN by

hk+ 1
2
=hk − µk

∑

i∈Ik

wi||ui||
2

Lk
min

[

1, δ̂(i)
k

]

(I − PΠi)(hk),

hk+1 =proxµk
Lk

ψk
(hk+ 1

2
),

where µk ∈ (0, 2) is the step-size,

Lk :=
∑

i∈Ik

wi||ui||
2 (7)

is a Lipschitz constant of ∇ϕk , PΠi is the metric projection2
onto Πi := argminh∈RN |ei(h)|,

δ̂(i)
k :=

{

δ
(i)
k

||ui||d(hk,Πi)
if ||ui|| *= 0

0 otherwise,

and I is the identity operator.

Note that Lk in (7) satisfies (2) by using the equation
ρ(i)

k (ei(h)) = γ(i)
(||ui||δ

(i)
k d(h, Πi)), where γ(i) = 1

||ui||2
if

||ui|| *= 0 3. The metric projection PΠi(hk) is expressed as

PΠi(hk) =

{

hk − ei(hk)
||ui||2

ui if ||ui|| *= 0

0 otherwise.

Moreover, prox µk
Lk

ψk
for ψk in (5) is called Adaptively

Weighted Soft-Thresholding (AWST) [12] and has a closed
form expression:

proxµk
Lk

ψk
(h) =

N
∑

j=1

sgn
(

hj

)

max

{

|hj |−
µk

Lk
λω(k)

j , 0

}

ej ,

where sgn(·) : R → R is the signum function defined by
sgn(x) := x/|x| if x *= 0, sgn(x) := 0 otherwise, and
{ej}N

j=1 is the standard orthonormal basis of RN . Intuitively,
AWST cuts off the components having smaller absolute val-
ues than the threshold µk

Lk
λω(k)

j . The overall complexity of

2For a given nonempty closed convex set C ⊂ RN , the metric projection
of h ∈ RN onto C is defined by PC(h) := arg min

g∈C
‖h − g‖ and the

distance between an arbitrary point h ∈ RN and a closed convex set C ⊂
RN is defined by d(h, C) := ||h− PC(h)||.

3For a given f ∈ Γ0(RN ), γf(x) : RN → R is the Moreau envelope
[24] of f of index γ ∈ (0, +∞) defined by

γf(x) := min
y∈RN

„

f(y) +
1

2γ
||x− y||2

«

.

Then, the gradient of γf(x) is 1
γ
-Lipschitz continuous.

Algorithm 2 is O(N) if the weight ω(k)
j and the cut-off value

δ(i)
k can be calculated in order O(N) (see (8), (9) in Sec. 4).
Note that the designs of the weight ω(k)

j have been proposed
in [12, 13, 14]. The cut-off value δ(i)

k can be designed using
many strategies (e.g. theory of robust statistics [17]).

Remark 1 [A geometrical description of Algorithm 2] Al-
gorithm 2 embodies an intuitive idea: For each i ∈ Ik, a
large distance between hk and Πi implies that Πi is affected
by an impulsive noise and ”reliability” of Πi should be low.
We consider the situation in which Algorithm 2 updates hk

to hk+ 1
2
at time k. Then, hk+ 1

2
is designed by a weighted

average of the exact or relaxed projections onto hyperplanes.
More precisely, for each i ∈ Ik , if d(hk, Πi) ≤

δ
(i)
k

||ui||
, which

implies that ”reliability” of Πi is high, then the exact projec-
tion PΠi(hk) is employed; Otherwise, the relaxed projection
(1 − δ̂(i)

k )hk + δ̂(i)
k PΠi(hk) with δ̂(i)

k < 1 is used.

Remark 2 [Reproducing an existing algorithm] Note that
Algorithm 2 reproduces Robust Variable Step-Size Normal-
ized Least-Mean-Square (RVSS-NLMS)4 [6] if we set

Ik := {k}, λ = 0, µk = 1.

4. NUMERICAL EXAMPLES

We examine the efficacy of the proposed algorithm in the con-
text of sparse system identification. We use the sparse echo
impulse response h∗ of lengthN = 512 initialized according
to ITU-TG.168 [25]. The input signaluk is generated by zero
mean white Gaussian with variance 1. The noise nk is zero
mean white Gaussian and signal-to-background-noise ratio
(SBNR) is 20(dB), where SBNR := 10 log10(E[z2

k]/E[n2
k])

with zk := uT
k h∗ (E[·] denotes expectation). An impulsive

noise is generated by ηk = ξkNk, where ξk is a Bernoulli
process with probability of success P [ξk = 1] = p and Nk is
zero-mean Gaussian with variance σ2

N = 1000σ2
z , and where

σ2
z is the variance of zk. For all the simulations, we set the
initial vector h0 := [0, . . . , 0]T .

We compare Algorithm 2 with NLMS [18], RVSS-NLMS
[6], and RZA-NLMS [9]5. In this section, we call Algorithm
2 with Ik = {k} as Proposed 1, and Algorithm 2 with Ik =
{k − 9, . . . , k} as Proposed 2.

Table 1 shows the parameter settings of all the algorithms.
Each step-size µk is chosen in such a way that the initial rate
of the convergence of all the algorithms is the same under

4Algorithm 1 generalizes Robust Variable Step-Size Affine Projection Al-
gorithm (RVSS-APA) [7]: The use of γ(i)

(δ(i)
k d(h, Si)) with Si employed

in [12, Remark] as ϕk in Algorithm 1 leads to the composition of the prox-
imity operator of ψk and the update of RVSS-APA.

5RZA-NLMS [9] is described by the following equation:

hk+1 = hk − µ
ek(hk)

||uk||2
uk − λ

N
X

j=1

ω
(k)
j sgn(h(j)

k )ej

where µ > 0 is the step-size and λ > 0 is the regularization parameter.
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Gaussian noise environment, i.e., p = 0. The regularization
parameter λ is chosen to obtain the best results in our ex-
periment. We employ the design of the weight ω(k)

j of the
weighted !1 norm in [13]:

π(k)
j = 1

|h
(j)
k |1−q+υ

ω(k)
j =

Nπ
(k)
j

P

N
l=1 π

(k)
l

(j = 1, 2, . . . , N), (8)

where υ > 0 is a small constant for regularization. This tech-
nique is based on an approximation of !q quasi-norm || · ||q
(q ∈ (0, 1)) to the q-th power in the neighborhood of hk,

||x||qq =
N

∑

j=1

1

|xj |1−q
|xi| +

N
∑

j=1

1

|h(j)
k |1−q

|xj | ,

because ||·||qq evaluates the sparsity of the systemmore tightly
than the !1 norm. In [6], [7], the design of δ(i)

k for RVSS-
NLMS was introduced by

δ̄(i)
k = αδ̄(i)

k−1 + (1 − α)min

{

δ̄(i)
k−1,

(

ek−1(hk−1)
||uk−1||

)2
}

δ(i)
k = ||ui||

√

δ̄(i)
k ,

(9)

where the forgetting factor α ∈ (0, 1) is chosen by knowl-
edge of the color of the input signal. Since RVSS-NLMS is
the simplest case of Algorithm 2 (see Remark 2), we use the
design (9) in this section for a fair comparison with Algorithm
2 and RVSS-NLMS. Note that the computational complexity
of the designs in (8) and (9) are O(N).

We adopt two measures (i) system mismatch defined as
χ(hk) := 10 log10

||h∗−hk||
2

||h∗||2 , and (ii) the approximation of

!0 norm defined as sparse(hk):=
∑N

j=1

(

1 − e−β|h
(j)
k |

)

(+
||hk||0), where β is a large positive constant (we set β =
1000). The simulation results are averaged over 300 runs.

First, we consider the case where the output is contami-
nated by impulsive noise, i.e., p = 0.01. From Fig. 2, the two
proposed algorithms achieve better performances compared
with RVSS-NLMS in terms of system mismatch. Proposed
2 achieves the best steady-state performance and Proposed 1
achieves the best initial rate of the convergence in this exam-
ple. Fig. 3 shows that the two proposed algorithms success-
fully estimate sparse(h∗).

Finally, we examine the case where no impulsive noise is
added to the output, i.e., p = 0. Even in this case, the two
proposed algorithms achieve better steady-state performance
compared to all the conventional algorithms in Fig. 4.
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Table 1. Parameter settings of all the algorithms. The cut-off value δ(i)
k of the Huber loss function in (5) is designed using (9)

with the initial value δ̄0 and the forgetting factor α. σ2
d and σ2

u are the variances of the output signal and the input signal. The
weight ω(k)

j of the weighted !1 norm in (5) is designed by (8) with parameters q and υ.

µk δ̄0 α wk λ q υ

NLMS [18] µk = 0.5
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!!

RVSS-NLMS [6] µk = 1.0 δ̄0 = σ2
d

Nσ2
u

α = 0.998
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!!

RZA-NLMS [9] µk = 0.5
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!!

λ = 2 × 10−5 q = 0.01 υ = 1.0 × 10−6

Proposed 1 µk = 0.9 δ̄0 = σ2
d

Nσ2
u

α = 0.998 wk = 1 λ = 2 × 10−2 q = 0.01 υ = 1.0 × 10−6

Proposed 2 µk = 1.0 δ̄0 = σ2
d

Nσ2
u

α = 0.998 wk = 1
10 λ = 2 × 10−2 q = 0.01 υ = 1.0 × 10−6
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Fig. 2. Comparison of system mismatch (under impulsive
noise).
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Fig. 3. Comparison of sparse(hk) (under impulsive noise).
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Fig. 5. Comparison of sparse(hk) (no impulsive noise).
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