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ABSTRACT

We propose a novel multi-estimate dynamic programming

(DP) method for on-line detection and segmentation of sig-

nificant anomalies in a video sequence. The method is based

on the concept of sparsity, which means that we reduce visual

features of each frame to a set of keypoints. In our line-

scan application this is done by extracting only the intensity

extrema. This way, we can decrease DP’s inherent noise-

amplifying tendency when building up the estimates of an

anomaly. For detection improving, we introduce weights that

express similarity between the spatial distribution of pixels

forming so-called DP score sums and a reference representing

their assumed distribution. The spatial dynamics estimation

is improved by 30 % if compared to the intensity-only DP.

Some 59 % change point recovery rate is attained in a web

imaging application where illumination varies, contrasts are

small, and the decision making time is limited to fractions of

a second due to high-speed running of the web.

Index Terms— Estimation, change point segmentation.

1. INTRODUCTION

Matched filter has been widely used for detection of changes

with spatial and temporal dynamics in imaging due to its opti-

mality in maximizing the signal to noise ratio in the presence

of additive random noise. However, because perfect matching

is unlikely in reality, estimation based on dynamic program-

ming (DP) has also been a subject of studies in the past.

Given a change dynamics model, the DP-based estima-

tion is a process producing a multitude of potentially infinite

sequences of pixels from the frames continuously observed.

The ability to detect a change from these sequences is of a key

interest. In this context, we consider a sparse representation of

significant visual features and study a novel DP-based weight-

ing method for sequential change point segmentation of them.

In our approach, the sparsity is realized by extracting local

maxima (minima) of each input frame in a prefiltering step.

The weights express similarity between the spatial distribu-

tion of the pixels, that build up so-called DP score sums, and

a reference based on explicit or implicit assumptions about

the true distribution. In this way, this paper presents incre-

mental progress on DP-based dynamics estimation over our

previous work [1] where, along sequential run-length analy-

sis, an algorithmic speed-gain by extracting extrema for the

standard DP analyzed in detail in [2] was discovered.

The paper is organized as follows. The observation model,

a review of the DP-based estimation, and words about cu-

mulative sums of random variables from the viewpoint of

change points are given in Sect. 2. Sect. 3 presents the mo-

tives of the work by first making a short note why the DP ana-

lyzed in [2] is prone to errors. Then technical operating char-

acteristic computing in the sequential context is presented,

since the ability of sequential tests to detect small changes and

change points in possibly long samples of data is often supe-

rior if compared with fixed sample size tests or hard thresh-

olding, see e.g. [3]. Sect. 4 contains simulation and experi-

menting with a multi-estimate version of the original simple

DP, whose estimates are sequentially monitored. Conclusions

are drawn in Sects. 5 and 6.

2. OBSERVATION MODEL AND ESTIMATION

After removing deterministic background components and

improving detection sensitivity by various filtering meth-

ods that reduce noise and enhance the actual change, point

representation of the change intensity can be given by

zri = A+ v, (1)

where A is the change magnitude, ri = [xi, yi]
T is the x,y-

position vector of a pixel at the frame i where T is the trans-

pose operation, and v is white Gaussian zero-centered noise

with a constant variance. The x,y-position ri is slowly vary-

ing according to a known model between successive frames in

an appropriate imaging configuration. The magnitude A may

come from a particular distribution but we assume henceforth

that its mean value is simply non-zero. In the matched filter-

ing, the pixels the change (1) most likely occupies are found

by

[r̂i, . . . , r̂i−N ] = arg max
r0
i
,...,r0

i−N

Ii (2)

where the superscript “0” represents a known relationship

or constraint between the successive position vectors of the

change, and Ii = {I(ri, . . . , ri−N )} denotes the set of all

possible (sufficient) statistics computed with the valid combi-

nations of the pixels in the N+1 most recent frames at a time.

The subscript i refers to the most recently captured frame,

termed also the “end-frame” later.
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2.1. DP-based change estimation for imaging

If the x,y-coordinates of a change (1) vary in a random man-

ner but within some physics-related limit between two suc-

cessive frames, we can again base our estimate on the ar-

guments of (2) with the difference that now the number of

pixel combinations—out of which only one constitutes the

change—grows exponentially as more frames are captured.

A standard approach making feasible computation possible is

to sum up intensity values of pixels among regions of a fixed

size recursively for each end-frame pixel and then take the

maximum as in (2); i.e., we can write

Iri = max
ri−1∈R(ri)

{Iri−1
}+ zri (3)

for an end-frame pixel at ri where Ir0 = 0 for the initial

condition and R(·) defines the set of plausible positions of

the change at the next/previous frame with respect to an end-

frame coordinate ri.
1 Due to the continuous flow of frames,

the “oldest” pixel of those that build up the largest sum of

{Iri−1
} in (3) yields the estimate, which is thereby removed

from the temporary sum of N+1 intensity values (not shown).

Formally for j = i, . . . , i−N − 1 for all the sums Ij = {Irj}

r̂j−1 = arg max
rj−1∈R(̂rj)

Ij (4)

produces coordinates [r̂i−1, . . . , r̂i−N−1] of the pixels that

build up the largest sum in (3) as in (2). Undoing the max-

imization by working backward is historically called back-

tracking. Numerous authors have studied the described and

alike DP approaches during the past few decades; see e.g. [2,

4, 5] and the references therein.

Note that independence in a set of scores (3) is achieved

only if the score sums contain no joint pixels, but this would

constitute a severe restriction for building up the sums. More-

over, this is also a major reason why performance evaluation

tools for the DP above, both from the viewpoint of detection

and dynamics estimation, tend to lack accuracy.

2.2. Change point detection in time series

Consider a process which produces a potentially infinite se-

quence of observations y1, y2, . . . , yi, . . . of a random vari-

able y. Sequential change point detection in its classic form

denotes repeated testing of the two simple hypothesis:

H0 : θ = θ0

H1 : θ = θ1.

Before the unknown change time t0, the parameter θ is equal

to θ0 , and after the change it is equal to θ1 6= θ0. The prob-

lem is then to detect the change in the parameter as quickly

1If we know that a change is positioned at a pixel at some coordinate

rj = [x0, y0]T , then the set of plausible positions e.g. at the previous frame

can be defined as R(rj) = {rj−1|x, y ∈ Z, (x−x0)2+(y−y0)2 ≤ r2},

where Z denotes the set of integers.

as possible. If we restrict the analysis to a single sequence of

point-like values y1, y2, . . . , yi, . . . extracted by DP frame-

by-frame, the detection of the change with a minimum num-

ber of observations can be described by the alarm time

ta = argmin
i

{Si ≥ h} (5)

where h is a threshold and {Si; i ≥ 0, S0 = 0} is a stochastic

process with independent increments. The optimum cumula-

tive sum (CUSUM) statistic is given by

Si = max{0, Si−1 + g(yi)} (6)

in which g(y) = p1(y)/p0(y) with the known probability

density functions p0(y) for noise-only and and p1(y) for

change plus noise states; see e.g. [6, 7, 8]. The optimum

theory also states that the best estimate of the change time

t0 is given by a renewal process of (6) wherein each renewal

takes place when Si returns to 0. If the change is temporary,

the switch from θ1 back to θ0 can be described by

tb = argmin
i

{mi − Si ≥ δ} (7)

where 0 ≤ δ < h and

mi = max
k≤i

{Sk} (8)

is the current maximum value after the last renewal of (6),

which yields the estimate of the switch time t1. The estimates

of the change points t0 and t1 segment the change in time.

For the statistic, we will use

g(y) = y − ν, (9)

as various criteria like the above can lead to it, see e.g. [9], and

because the so-called run-length distribution of (5) can be pre-

sented for standardized parameters µ−ν and h, see e.g. [10].

Here µ is the mean of y, and ν denotes a minimum interesting

magnitude of a jump. Note the relation of (6), (9), and (3).

3. STATISTICAL REASONING

The statistical properties of (3) can be studied by reverting

to the maximization process. Given that (4) renders a single

“best” cumulant out of i.i.d. z1<z2<. . .<z realizations of

a random variable z denoting intensity, the probability density

could be given by

f(z)= [F (z)]−1f(z), (10)

where F is the cumulative distribution and f is the probabil-

ity density function of z. Fig. 1 plots the densities for a few

different numbers of plausible coordinates  defined by R un-

der Gaussian statistics. By the optimality principle it would

be sufficient to retain the estimate with the highest score only.

However, as illustrated, the noise becomes greatly amplified,

which one may expect to gain strength from score dependen-

cies when working with multiple frames in practice. This mo-

tivates reconsidering (3).
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Fig. 1. Noise amplification process as the DP algorithm’s

search region pixel count is increased. f(z) denotes the prob-

ability density function of z as given in (10). For comparison,

the density of the change is also illustrated in the same graph.

3.1. Weights based on spatial change dynamics

If a reference of the dynamics of the change would be avail-

able, corrupted by noise or not, one could realize the matching

of the reference coordinates, forming a vector Cref, and coor-

dinates of the pixels that build up a score sum in (4), stacked

in a vector Cri , by using for example the l2-norm as a measure

of dissimilarity. Then the l2-norm squared could be calculated

as

d(Cref,Cri) =
||Cref − Cri ||

2
2

N
, (11)

which is a non-central chi-squared random variable.2 Based

on this, we define the weight

w(Cref,Cri) =
1

1 + d(Cref,Cri)
(12)

that is to be used in a manner illustrated in Fig. 2 to improve

detectability. While the use of a large number of coordinates

counters noise, weights close to unity can be attained only if

the reference contains no systematic errors.
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Fig. 2. When multiplied by (12), the density of the obser-

vations drawn with  = 9 in Fig. 1 is here shifted to the left

(σ2
ref+σ2

ri
= 2, d(Yref,Yri) = 0). The probability density of

the change is the same as in Fig. 1.

3.2. Detectability improved

When the densities overlap like above, a number of sam-

ples depending upon the underlying statistics is required for

discrimination. The receiver operating characteristic (ROC)

curves shown in Fig. 3 are the cumulated values of run-

length probability mass distribution for (5) computed using

the noise-only for  = 9 and change plus noise densities in

2Given that the both Cref and Cri contain both deterministic components

Yref and Yri plus zero-centered i.i.d. Gaussian noise with variances σ2
ref

and

σ2
ri

, the mean is E(d(Cref,Cri)) = d(Yref,Yri)+σ2
ref

+σ2
ri

and variance

var(d(Cref,Cri)) =
4(σ2

ref+σ
2

ri
)2+4(σ2

ref+σ
2

ri
)2d(Yref,Yri

)

N
.

Figs. 1 and 2. The curves are produced for h=5 (using 250

Gauss-Legendre points, see [10]) so that the parameter ν is

chosen to produce a fixed mean false-alarm interval of about

100 observations in the both a) and b), Pd being the probabil-

ity of detection and Pfa being the probability of false alarm

as usual. These curves are suggestive due to the fact that

the analysis is one-dimensional, but one could apply expres-

sions derived in [1] for a ROC generalization to an imaging

setup by using the run-length probability mass distributions

produced for Fig. 3. Here we omit this since Pd ≫ Pfa just

after 10 cumulant, showing that assigning the spatial domain

weights can provide the detectability needed.
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Fig. 3. ROC curves with and without the weights using the

densities in Figs. 1 and 2,  = 9. While a) indicates quick

detection, the probability of false alarm is very high in b).

4. MULTI-ESTIMATE CHANGE SEGMENTATION

The noise amplifying nature of the maximization step in (3) is

intrinsic to the parameters of the method and is not due to im-

proper use of DP, which motivates developing the simple DP

further. In particular, one needs to reduce the typical noise-

amplifying ambiguity embedded in the DP’s search space in

order to attain efficiency like in Fig. 3. Explaining the term

“multi-estimate”, we shall write

Iri = {prune(Ii−1) + zri} (13)

for an end-frame pixel at ri to explicitly include a more DP-

style pruning of all the cumulated score sums up to and at the

previous frame Ii−1 = {Iri−1
|ri−1 ∈ R(ri)} into our nota-

tion. Then employing the concept of sparsity, the following

steps are taken:

• For prefiltering, we suggest extracting local maxima

(minima) framewise. Only these brightest (darkest)

pixels, visual keypoints, will be used in the estimation.

• For pruning, we suggest retaining the largest score

sums out of those sums in Ii−1 having one or more

pixels in common. This is simple to implement since it

does not depend on the change’s (1) actual dynamics.

The first step makes it possible to uncover the spatial dynam-

ics of a low contrast change while the second limits compu-

tational burden. For the theoretically quickest detection (5)

followed by the change point segmentation (7), we compute

Sri = {Si−1 + g(wrizri)}
+ (14)
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so that Si−1 = {Sri−1
|ri−1 ∈ R(ri)} using the pixels that

simultaneously build up the DP score sums (13) in the man-

ner discussed above. The plus sign denotes the same renewal

process shown in (6) wherein each renewal takes place when

a statistic returns to 0, i.e. Sri = {max(0, Sri)}. A high

enough statistic implies the presence of a change.

The two-stage pruning above can result in high compu-

tational demands, for example easily eating away the speed-

gain we found in [1], but the complexity is scalable. Also the

possibility of parallel computing exists. We have controlled

the total number of the DP score sums (13) per frame and

their redundancy by frequency domain filtering of the frames,

but here we omit such practicalities of low noise operation.

4.1. Simulated estimation error experiment

As a closure to results in the Figs. 1-3 for  = 9, Fig. 4 pro-

vides a simulated example of estimation error of the multi-

estimate DP assuming that a change (1) is present between

100 successive line frames.3 For analytical simplicity, the

change dynamics are linear of the first degree (a constant shift

in position ri equal to one pixel per frame) in the image plane

which, without better knowledge or precomputed reference

lookup tables, is here and in the following least-squares esti-

mated for (11). A total of 20 frames is used at a time, and an

equivalent matched filter (2) operates as the reference.

0.75 1 1.25 1.5 1.75 2 2.25 2.5
0

5

10

15

20

25

30

A

M
e

a
n

 s
q

u
a

re
d

 e
rr

o
r 

(i
n

 p
ix

e
ls

)

Optimum matched filter

b) Without weights

a) With weights

Fig. 4. Error curves where a) approaches the optimum at

much lower signal levels than b), the simple DP-based estima-

tion. As real changes’ image plane spatial dynamics are often

unique, optimality shown here is hardly ever established.

The relation of the above to prior work is that, for the

given model (1) and details in Sect. 2, the simple DP has a

fundamental performance limit at A < 2, which is depicted

in [2]. The limit, also observable in Fig. 4 b), becomes practi-

cally invariant to the number of frames N used by the DP and

is due to the noise-amplifying nature of (3) and (4) like shown

previously. Here, as only the local maxima (minima) are con-

sidered via prefiltering of the Gaussian distributed data, some

33 % of pixels statistically likely to contain a point-like pos-

itive (negative) change per frame make the sparse set of key-

points that updates the estimates (13). The reduction of data

3When the 100th frame is processed, an estimate in a maximum likelihood

sense is obtained by backtracking all the frames with and without assigning

the weights using (4). This reflects the performance when change points are

accurately on-line estimated with (13) and (14).

makes their spatial domain dynamics matchable to the ref-

erence distribution of pixels as in (12), showing some 30 %

average improvement of the estimation error between a) and

b) above. However, the theoretically achievable improvement

is only limited by the statistics of (11) as detailed in Sect. 3.1.

Since the scores in (13) follow an extreme value distribution,

see e.g. [5], it is also elementary to see whether or not com-

puting a weight is worth the effort in a more general or higher-

order setup (i.e. if A≫2).

4.2. Change point segmentation experiment

Fig. 5 a) presents a low-contrast surface anomaly with spatial

distribution somewhat linear of the first order. The vertical

extent of the image is obtained by gathering sequentially rows

of horizontally oriented line frames with a high speed line-

scan CCD camera at a laboratory-level paper mill setup. Note

the qualitative difference between a change in the mean value

of the signal, as defined in (1), and a change in the behavior

around a mean level, as shown here. Since each anomaly is

unique, effectiveness is achieved by

w(Cref,Cri) =

{

1 if d(Cref,Cri) < τ
1

1+d(Cref,Cri
) otherwise

(15)

where is τ is the maximum distance selected by determinis-

tic speculations about the likely difference (11) in practice,

discussed also in the footnote2. As the anomaly extends over

numerous line frames and is not separable by intensity only,

the sequential segmentation with (13) and (14) is used in b)

showing quite accurately estimated change points out of all

the 8-bit gray-scale values. The margin between the noise-

only and change plus noise statistics (14) was about ten fold.

a) b)

Fig. 5. Low-contrast anomaly in a) and multi-estimate seg-

mentation result in b). Here τ = 2.7, N = 20 to counter

higher frequency fluctuation. The end-frame maxima were

connected to the scores (13) within the 17 nearest pixels.

Results of a subjective segmentation quality test are pre-

sented in Table 1. The labels on top denote different types

of paper grades ranging from drawing paper (i, 130 g/m2) to

standard white (ii, 80 g/m2) and red-colored copy paper (iii,

80 g/m2), thick (iv, 160 g/m2) and coated color copy paper (v,

80 g/m2), and calendered typewriter paper (vi, 70 g/m2) se-

lected to represent the wide variety of paper formation types.
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All the samples contained a surface anomaly alike that shown

in Fig. 5 a) and were viewed from different angles. For in-

stance the result in b) was evaluated to be about 70 % correct

from the viewpoint of the anomaly’s length, but the absolute

truth is not easily stated. Nonetheless, the ratings show that

choosing a large-enough number of frames filters higher fre-

quency non-linearities in the intensity levels, unachievable in

a simple intensity only DP setup without additional measures.

Table 1. Segmentation quality test results using different pa-

per grades captured at 42 µs scan rate with paper passing the

camera 3.9 m/s and horizontal pixel resolution of 0.125 mm.

The “finer” the paper grade, the better the recovery rate.

Paper grade: i ii iii iv v vi

Recovery rate (%): 37 44 44 67 79 83

5. DISCUSSION

Though the ratings with 59 % average in the Table 1 may

seem low, the percentages are adequate for an anomaly recog-

nition procedure, which is typically adopted when the prob-

lems of on-line detection and change segmentation coexist,

to more holistic change characterization without stringent

real-time requirements. Thereby undersegmentation is gen-

erally less critical. For fair comparison, the DP parameters

were not paper grade specifically tuned. But even if they

had been tuned, the optical fluctuation cannot be eliminated

completely from partially masking low-contrast changes as

shown in Fig. 5. Thus, some simple clustering, rank ordering

at the pruning stage of alike DP scores, or spatial domain

preprosessing as discussed next could come to mind.

The DP-based estimation can be applied to a variety of

problems in which the target satisfies point representation or

can be transformed into such. In remote sensing, for exam-

ple, one refers to track-before-detect processing designed for

clutter-obscured dim signal detection often comparable to that

in Fig. 5. If preceded by enhancement filtering that is matched

to the expected spatial frequency of a known anomaly, the DP

may perform well without the “smarter” estimate build-up or

spatial monitoring. That is, achieving the efficiency of detec-

tion in Fig. 3 and the accuracy of estimation close to that of

the matched filter in Fig. 4 is linked to the question, what pre-

processing provides best possible detection sensitivity? Since

finding a solution to this problem often promotes simpler vi-

sual feature representation, our keypoint-based DP can be a

viable tool due to the spatial information embedded in its es-

timates with or without the CUSUM-based segmentation.

6. CONCLUSION

We have studied a DP solution for multiframe on-line detec-

tion and segmentation of small low-contrast changes. Our

multi-estimate DP uses visually significant pixels, viewed as

keypoints, by selecting only the local intensity maxima (min-

ima) framewise. Like the pruning presented, also the weights

we introduced for detection and segmentation purposes make

use of spatial distribution of the selected pixels. From the

viewpoint of our line-scan application, picking up intensity

extrema per frame is probably the simplest way to achieve a

reduced, sparse, representation of visual features. Thus, we

consider the simulated 30 % gain in accuracy and the empir-

ical 59 % recovery rate of low-contrast change points in the

experiments encouraging.
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