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ABSTRACT

The problem of deterioated automatic speech recognition per-
formance for telecommunication devices like mobile phones
is well-studied. However, few papers analyse the influence
of emergency broadcast radio devices such as the Terrestrial
Trunked Radio (TETRA), which is used for many public
safety networks in Europe and Asia. In this paper, we dissect
several aspects of the TETRA encoding scheme when trans-
mitting over a dedicated emergency radio station by conduct-
ing experiments with original hardware and corresponding
software simulations. We also offer a new technique for a
cepstral mismatch compensation.

1. INTRODUCTION AND RELATED WORK

Terrestrial trunked radio (TETRA) [1] is a standard for dig-
ital trunked radio systems, first published by the European
Telecommunications Standards Institute (ETSI) in 1995. It
has been designed for robust speech transmission and indeed
is used for public safety networks across Europe, Asia and
other countries. However, its influence on automatic speech
recognition (ASR) has rarely been analysed.

The objective speech quality of the TETRA codec is ex-
amined in [2]. While focussing more on the speech quality
degradation in correlation with the bit error rate, the find-
ings are, as the authors mention themselves, somewhat in-
conclusive. [3] offers an extensive overview of the TETRA
encoding/decoding performance, and on package delay and
throughput in an overall architecture, with special focus on
transmission errors and co-channel interference.

Scientific papers analysing the TETRA encoding im-
pact on natural language processing by automatic means are
scarce. [4] analyses the TETRA codec on the speaker recog-
nition performance. They do not only work on the audio
signal, but also make direct use of the linear prediction co-
efficients that are computed by the TETRA encoder. Simply
taking the decoded speech signal performs worst and seems
to be the hardest setting. [5] is one of the few papers employ-
ing actual TETRA data in their recognition setup. On a small
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Fig. 1. Motorola’s CM 5000 radio station, as used in the ex-
periments

corpus of spoken German digits, they show that the TETRA
codec performs poorly in comparison to the plain signal, to
a 16 kbit/s Code-Excited Linear Prediction (CELP), and to a
GSM codec.

In this paper, we report on several experiments to iden-
tify the challenges encountered by an ASR backend that only
has access to TETRA output. For this, we employ a TETRA
broadcast station as used by the German firefighters and anal-
yse the impact of the setup on a medium-sized German TV
broadcast corpus. We further analyse the influence of training
material preprocessing and additional noise, devise strategies
for adapting acoustic models without access to TETRA radio
output, and evaluate several frontends for feature extraction.

2. TECHNICAL BACKGROUND

In this section, we briefly review the TETRA encoding
scheme, as well as harmonic distortions, which seem to
play a major role in ASR on TETRA signals. For the hard-
ware, we employ the CM 5000 radio station (Figure 1) and
the MTP 850 handheld device, both by Motorola.
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2.1. TETRA Encoding

The TETRA speech codec is based on the CELP coding
model. It employs both a short-term synthesis filter working
with linear prediction coefficients and a pitch filter working
with an adaptive codebook. For a set of linear prediction
coefficients a; with order p = 10, the short-term synthesis
filter is given by:
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S(z)  1+3F  aiz7t’
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For a pitch delay 7" and a pitch gain g,, the pitch filter is given
by:

r 1
P(z) 1—gpz T~
Pitch and excitation codebook parameters are determined by

selecting the candidate that has the closest output to the per-
ceptually weighted input signal, given by the filter:
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For the codebooks, the Algebraic CELP technique is used,
i.e., the codebook vectors of the TETRA codec are fixed,
but shaped according to a dynamic matrix that depends on
S(z), given by the Toeplitz lower triangular matrix that is
constructed from the filter impulse response:

S(2/0.75)
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For a given speech signal in 8§ kHz, the linear prediction co-
efficients are computed for each frame of 30ms, whereas
pitch and the algebraic codebook parameters are transmitted
for four sub-frames of length 7.5ms. The final bit rate is
4.567 kbit/s. For a complete overview, see [1].

2.2. Harmonic Distortion

Harmonic distortion adds full number multiples of existing
frequencies to a signal. A common measure for the level of
distortion is the Total Harmonic Distortion (THD) defined as
the ratio of the sum of the powers P, with n > 1 of all NV
multiples of a frequency to the power of the fundamental fre-
quency Py:
N
THD =) P./Fo 5)
n=1
Harmonic distortion can be caused by amplifiers, micro-
phones, loudspeakers and other devices. Even high quality
amplifiers often have a THD of up to 1% in the relevant spec-
tral range. While even a large THD can be acceptable in terms
of perception [6], already smaller distortions change the fre-
quency characteristics and as a result the cepstral coefficients
used for ASR.

Preliminary tests [7] not only indicate that we have to ex-
pect harmonic distortion caused by our TETRA radio equip-
ment, but also that the adaptive code book in the TETRA
codec emphasizes them. The reason might well be that, since
the codec is optimized on human speech intelligibility, special
focus is on the preservation of harmonics produced in voiced
phonemes, at the cost of further amplified harmonic distor-
tions in the signal. We will analyse this further in Section 5.2.

3. CEPSTRAL MISMATCH COMPENSATION

In [8] a Lombard effect and noise compensation method is
introduced. The authors show that distortion in the spectral
domain caused by the Lombard effect as well as noise can be
described and compensated in the cepstral domain as shown
in the following equation:

K
Cclean,n — Z A(n, k)CLombard,k +b(n) (6)
k=0

The n'" cepstral value Cclean,n Of clean speech can be esti-
mated from all K cepstral values ¢f ompard ;, Of @ comparable
frame of Lombard speech. The coefficients A(n, k) and B(n)
are determined using multiple linear regression (MLR) based
on all comparable frame pairs of clean and Lombard speech.

We assume that the described compensation can also be
used to formulate an approximation of a general transforma-
tion from the cepstral vector cyy of the test utterance to the
“clean” cepstral vector cam of the acoustic model. To enable
real-time applications we reduce the full set of our acoustic
models with about 200,000 mean vectors to a codebook of
300 cepstral mean vectors with k-means. We expect that sim-
ilar acoustic units and mixture components of the same unit
form clusters in the feature space, so that the quantisation er-
ror using the codebook is rather low.

Now, we determine the presumably corresponding vec-
tor % of the codebook €am ; to the mth frame’s feature vector
Cutt,m Of the utterance by minimum Euclidean distance. Fur-
ther, we only consider vector pairs with a distance below the
mean distance of all pairs of an utterance (“reliable pairs”) to
avoid compensation with possibly incorrectly assigned pairs.

Equivalent to Equation 6 we can now estimate the tran-
formation coefficients A(n, k) and b(n) for all reliable pairs.
Assuming that we have a sufficient number of reliable pairs,
structural differences should be covered by the transformation
while more random differences (e.g. caused by the quantisa-
tion error) should mainly increase the overall minimum error
during error minimisation of MLR.

With coefficient matrix A and coefficient vector b, we can
now estimate the compensated cepstral feature vectors Cygt
of all frames m of the utterance by using the following equa-
tion similar to CMLLR feature adaptation:

Cutt,m = Acyit,m +b @)

For ASR the compensated feature vectors Cytt ., are used.
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Fig. 2. Spectrogram of a sweep test signal as received over
TETRA

4. PRELIMINARIES

To characterise the frequency characteristics of the actual
TETRA channel, we transmitted a synthesised frequency
sweep from O to 8 kHz. In the setup, the CM 5000 is used
as sender, having the input signal fed in via the headset con-
nector. The MTP 850 acts as the receiver, and the signal is
recorded from the line-out. Figure 2 illustrates the drastic
quality deterioration: the encoding and subsequent transmis-
sion adds noise to the whole spectrum and suppresses all
frequencies above 4 kHz. In a separate experiment where we
re-recorded the signal without real TETRA transmission, we
could attribute the massive amounts of harmonic distortion as
witnessed in the spectrogram to the audio hardware.

Since we felt that such a clean signal is not to be expected
in real-life settings, especially in rescue operations, we also
created a second setup of experiments. It introduces distor-
tion caused by non-ideal microphones and ambient noises.
To achieve this, we feed the signal into the sender via the
MTP 850’s internal microphone placed in front of quality
loudspeakers. This setup resembles real-life usage of the
TETRA channel very closely.

In this paper, we denote the acoustic signal that is directly
recorded from line-out as TETRA-clean, and the signal further
distorted by the microphone and the loudspeaker as TETRA-
noise.

For feature extraction, we employ the HTK toolkit,! and
extract 39 features (12 MFCCs with energy, plus deltas and
accelerations, using zero-mean) for each frame of 25 ms win-
dow length using a stepsize of 10ms. As an alternative, we
extract 12 features using the ETSI advanced frontend,? but
compute the deltas and accelerations with HTK using the pre-
vious configuration. We use the TETRA codec reference im-
plementation as provided by ETSL.? The Adaptive Multi-Rate
(AMR)* speech codec has been used in the experiments since
it features a comparable ACELP scheme. Recording and re-

Mtk.eng.cam.ac.uk/
2yww.etsi.org/WebSite/Technologies/
DistributedSpeechRecognition.aspx
3pda‘etsi.org
4www.3gpp.org/ftp/Specs/html-info/26104.htm

sampling of the audio signals was carried out using SoX.>
For language modeling, we make use of the MIT Language
Modelling Toolkit® to compute a trigram language model with
modified Kneser-Ney smoothing. We use the Julius toolkit’
for decoding.

For training and testing we employ two manually tran-
scribed, distinct sets of German broadcast news and politi-
cal talk-shows. The original audio is sampled at 16 kHz and
can be considered to be of clean quality. Noisy sections of
the recordings have been omitted. The training set consists
of 82799 sentences (723 933 running words, 52 100 distinct),
and the test set consists of 5719 sentences (46 978 running
words and 8 799 distinct words).

5. EXPERIMENTS

We performed three sets of experiments which analyse var-
ious aspects of the TETRA transmission channel and their
impact on ASR performance, such as signal pre-processing,
suitable feature extraction and additional noise.

5.1. Separation of Recognition Influences

We conducted a set of experiments where we process both
training and test set in the same manner, to separate the effects
that lead to the recogniser performance drop. The results are
given in Table 1. The word error rate (WER) for the clean
speech is at 26.6 WER and at 42.3 WER for the TETRA-
clean signal. Based on this data set, we attribute 2.5 WER
to the frequency low-pass effect. Another 6.5 WER absolute
can probably be explained by the ACELP procedure within
the TETRA encoding scheme. This can be witnessed when
applying the conceptually similar AMR 4.75 codec with the
same bandwidth as TETRA to the resampled data. The ad-
ditional processing inside the TETRA codec itself does not
seem to degrade the performance substantially and only adds
another 1.8 WER. From this TETRA codec result, the actual
influence of the broadcast station can be measured at an addi-
tional 4.9 WER degradation. The effect of the different pre-
processing steps in comparison to the real radio signal is vi-
sualised in the spectrogram in Figure 3(a).

5.2. Simulating a real TETRA radio channel

In this set of experiments, we always measure the ASR perfor-
mance on the TETRA-clean test set. Further, we assume that
only the test data is available from a real TETRA device, and
the acoustic models should be fitted as well as possible using
channel simulations. The ideal case is to transmit all train-
ing data through a real TETRA radio channel, as performed
above, which leads to a WER of 42.3. Table 2 shows the ASR

Ssox.sourceforge.net
%code.google.com/p/mitlm/
7julius.sourceforge. jp/
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Table 1. Performance loss through TETRA codecs. Same
preprocessing of training & test material. HTK was used as
frontend.

kHz codec (train & test) WER
16 - 26.6
8 - 29.1
8 AMR 4.75 35.6
8 TETRA (codec) 374
8 TETRA-clean (hardware) 42.3

performance for a number of approximations. A huge gain
can of course be seen by matching the sample rate: resam-
pling the training data to 8 kHz results in a 13.9% decrease of
the WER.

What is more interesting is that by applying the codecs
from Section 5.1 afterwards, this only results in minor perfor-
mance boosts of 0.9% for AMR 4.75 and 0.6% absolute for
TETRA. Further analysing which effect causes this huge dis-
crepancy between the best WER of 62.5 — still 20.2 points
absolute worse than using acoustic models trained on real
TETRA data — we investigated the influence of artificially
adding channel noise, equalization effects and total harmonic
distortion (see Table 3), this time by relying on the hardware
equipment.

First, we checked the channel noise as introduced by the
equipment, clearly audible as a buzzing sound when silence
is transmitted. We recorded this “silence noise” and mixed it
into the training material. This led only to a marginal reduc-
tion in WER of 0.3 absolute. Next, we checked the influence
of non-linear frequency responses in real transmisson setups.
Measuring the frequency response by recording a synthetic
sweep from O to 4 kHz as shown in Figure 3(b), parameters
for simulating the equalization were obtained and applied to

the training data. Resulting in a WER of 64.1, the effect is
apparently negligible.

It seems that the major contribution to the error rate is due
to the harmonic distortion effects as witnessed in Figure 2.
We simulated this effext by adding harmonic distortions to
the clean signal, as follows: for each bin b in the spectro-
gram, we have shifted its frequency content to the bins nb
where n € {2,3,...,21}, i.e., we have added 20 harmonics
to the original signal. The shifting was performed in the fre-
quency domain (128 ms window length, 7/8-th overlap) and
phase has been corrected such that phase angle ¢ in bin b has
been transformed to phase angle n¢ in bin nb. The strength of
the individual harmonics has been calibrated by the intensity
measured in a frequency sweep that has been transmitted via
TETRA radio. This has led to much stronger harmonics than
those found in speech signals transmitted via TETRA. There-
fore, we have attenuated each harmonic by a factor of 0.02
which led to similar harmonic distortions as in real TETRA
transmissions.

As can be seen in Table 3, the added harmonics improve to
60.1 WER, an increase of 3.3 absolute. From the distortions
simulated, this is the largest increase. This strongly suggests
that THD introduced by the equipment and probably further
emphasised by the codec, contribute most to the large perfor-
mance degradation. While for a human ear this effect might
be inaudible, it heavily affects the MFCC balance. Manu-
ally checking the substitution errors, most of them are indeed
based on overtone confusion (e.g. the German “u” and the
German “i”).

5.3. Robustness/Frontend

For the third set of experiments, the performance of the ASR
system was evaluated on the more realistic TETRA-noise
setup as described in Section 4. Two additional frontends
for feature extraction in noisy environments are included. As
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Table 2. ASR results using channel simulation, for the
TETRA-clean setting, where the test set is recorded from the
TETRA radio station.

kHz codec ontrain WER
16 - 71.3
8 - 63.4
8 AMR4.75 62.5
8 TETRA 62.8
8 TETRA clean 42.3

Table 3. ASR results on the TETRA-clean set, adding possi-
ble effects of the TETRA hardware to the clean speech.

kHz distortion of train WER
8 - 63.4
8 tetra equipment channel noise ~ 63.1
8 equalization 64.1
8 artificial harmonic distortion ~ 60.1

can be seen from Table 4, the task is even more challeng-
ing, with a baseline performance of 81.9 WER. Independent
from the channel used, usage of the ETSI advanced frontend
consistently degrades performance, in the case of AMR 4.75
more than 8% absolute. We assume that this is caused by the
noise suppression in the frontend, which probably cancels out
relevant parts of the signal and thus results in loss of valu-
able information. Cepstral mismatch compensation (CMC)
in contrast improves performance in all settings and is the
best alternative when no TETRA radio material is available.
Unsurprisingly, the best results are achieved when training
the acoustic models on TETRA radio material.

6. CONCLUSION

In this paper, we offered a detailed analysis of the TETRA
channel impact on automatic speech recognition perfor-
mance. We highlighted which aspect of the channel con-
tributes most to the performance drop. It is interesting to note
that, while the broadcast radio station (i.e. TETRA-clean)

Table 4. ASR results with different frontends, for the
TETRA-noise setting, where the test set is recorded via mi-
crophone and then passed through the TETRA radio. Sam-
pling rate is 8 kHz for all settings, results are given in WER.

HTK ETSI

- 819 8.0 751
AMR4.75 748 834 747
TETRA 76.7 844 740

codec on train CMC

only adds a small error on a TETRA encoded signal, it is very
hard to simulate the distortion of the station without access
to the radio hardware. On a realistic setting including addi-
tional noise, the recognition rate is very poor. With cepstral
mismatch compensation, however, we were able to intro-
duce a feature compensation method that extends the HTK
extraction and surpasses the ETSI frontend in this particular
setting.

As we had only access to one specific TETRA station and
handheld device, evaluations with other TETRA equipment
are necessary to generalise the results in this work.
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