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ABSTRACT

This paper investigates the problem of designing a deterministic
system matrix, that is measurement matrix, for sparse recovery.
An efficient greedy algorithm is proposed in order to extract the
class of sparse signal/image which cannot be reconstructed by !1-
minimization for a fixed system matrix. Based on the polytope
theory, the algorithm provides a geometric interpretation of the re-
covery condition considering the seminal work by Donoho. The
paper presents an additional condition, extending the Fuchs/Tropp
results, in order to deal with noisy measurements. Simulations are
conducted for tomography-like imaging system in which the design
of the system matrix is a difficult task consisting of the selection of
the number of views according to the sparsity degree.

Index Terms— Compressed sampling, polytope theory, greedy
algorithm, tomography.

1. INTRODUCTION

The main goal of compressed sensing is to design a system matrix
A ∈ R

M×N withM < N for which every s-sparse signals x ∈ R
N

can be recovered from the observations y = Ax. The sparsity degree
s denotes the number of nonzero components in the signal. The
considered problem may include an additive perturbation that leads
to an observation vector y = Ax+n where n ∈ R

M . The objective
of designing a system matrix involves to specify the smallest number
M of required observations we need as well as the way to acquire
them (e.g. random sampling or regular sampling). Moreover, we
have to recall that this design will be obviously dependent on the
sparsity degree s and of the signal size N .

The classical approach to look for some sufficiently sparse solu-
tion consists to solve:

x̂ ∈ Argmin
x∈RN

‖x‖1 subject to ‖y − Ax‖2 ≤ ε, (1)

where ε > 0 and the !1-norm is formally defined as, for every x =
(xi)1≤i≤N ∈ R

N , ‖x‖1 =
∑N

i=1 |xi|. Numerous algorithms have
been proposed to solve problem (1) or its Lagrangian formulation
[1, 2, 3, 4]. By making use of the !1/!0-equivalence guarantees, the
latest non-smooth convex optimization techniques propose a specific
framework to exactly recover sparse signals by !1-minimization.

The main theoretical results about sparse recovery by !1-
minimization are briefly recalled below. On the one hand, sufficient
conditions were proposed by:
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• Donoho and Huo [5] with the concept of coherence for a ma-
trix A. This allows us to characterize !1/!0-equivalence and
thus leads to x = x̂,

• Candès et al. [6] through the restricted isometry property
(RIP) onto A to establish that x = x̂,

• Fuchs [7] and Tropp [8] using first order necessary condition
and then the subdifferential of the !1 norm in order to prove
that x = x̂.

Note that these sufficient conditions can include robustness to noise.
On the other hand, Donoho gives a necessary and sufficient condi-
tion based on polytope theory [9] to prove that x = x̂. Its dual
interpretation is known as the null space property.

Apart from the coherence property proposed in [5], these the-
oretical results require NP-hard computations to test their validity.
Normalized random system matrices have been largely studied in
the compressed sensing literature in order to simplify the recovery
conditions. Indeed, such an assumption onto the system matrix en-
ables to control the associated eigenvalue distribution and thus to
obtain an explicit relation between the observation number M , the
signal/image size N , and the sparsity degree s. However, such a
relation does not exist for deterministic matrices such those encoun-
tered in tomography applications. Until now, in order to design the
system matrix for a specific sparsity degree, it seems that most of the
existing works dealing with a deterministic context have introduced
some randomness in their formulation in order to justify the good
results obtained from !1-minimization [10, 11, 12].

In this work we propose a greedy algorithm based on Donoho
results [9] in order to extract the class of sparse signals which can-
not be reconstructed by !1-minimization for a fixed system matrix.
A consequence will be to extract an approximation of the largest
sparsity degree s allowing us to recover every s-sparse vectors by
!1-minimization based on a given deterministic matrix A.

The paper is organized as follows. Section 2 details a greedy
algorithm designed by Dossal et al. [13] which initially considers
neighborly condition of a polytope associated with a random ma-
trix. Section 3 presents the adaptation of this greedy algorithm in
order to deal with a deterministic matrix and details how to extract
the approximation of the sparsity degree s that allows us to recover
every s-sparse signal by !1-minimization. The way to integrate ro-
bustness to noise in the sparsity extraction is also presented. Finally,
Section 4 illustrates the performance of the algorithm in a context of
tomography.
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2. POLYTOPE THEORY FOR SPARSE RECOVERY

2.1. Theoretical results

In [9], Donoho describes the !1/!0-equivalence by considering ideas
from the convex polytope theory. In this work, Donoho introduced a
necessary and sufficient condition based on the neighborly property
of a polytope.

Definition 2.1 For every i ∈ {1, . . . , N}, let ai denote the i-th col-
umn of A. The quotient polytope associate to A is formed by taking
the convex hull of the 2N points (±ai) in R

M . A polytope P is
called (s-1)-neighborly if every subset of s elements (±i!ai!)

s
!=1

are the vertices of a face of P .

An illustration of a polytope P is provided in Figure 1(a) for
N = 3 andM = 2. In this example, it appears that P has 2N = 6
vertices and is 0-neighborly but not 1-neighborly (e.g. (a1, a3) does
not span a face of P ).

Theorem 2.2 [9, Theorem 1] Let A be aM ×N matrix withM <
N . These two properties of A are equivalent:
(i) The quotient polytope P has 2N vertices and is (s-1)-neighborly;
(ii) Whenever y = Ax has a solution x having at most s nonzeros,
x is the unique optimal solution of the !1-minimization problem.

2.2. Greedy algorithm to extract vectors inside the polytope for
random matrices

The geometric interpretation of Donoho was considered by Dossal
et al. [13], in a context of normalized random matrices, in order to
extract non-!1-identifiable vectors.

Regarding Theorem 2.2, a non-!1-identifiable vector denotes a
vector x ∈ R

N with a support I for which the image of the !1-ball
associated to the support I is inside the polytope. In other words,
non-!1-identifiable vectors have a small distance from the center
of the polytope to the hyperplane Hx (hyperplane going through
{sign(xi)ai}i∈I where I ⊂ {1, . . . , N}). This distance [13, Propo-
sition 1], illustrated in Figure 1(b), is 1/Dx where

Dx = ‖d(x)‖2 with

{
d(x) = AI(A∗

IAI)−1 sign(xI),

AI = (ai)i∈I .

In Figure 1(b), we can notice that (a1,−a2) does not span a face of
P and has a large Dx while (a1,a2) spans a face of P and has a
smaller value of Dx.

It results that looking for non-!1-identifiable vectors leads to
search vectors x with the largest measure Dx. Consequently, Dos-
sal et al. [13] have proposed an algorithm allowing to extract sparse
vectors with the largest Dx.

The greedy algorithm proposed by Dossal et al. [13] is recalled
in Algorithm 1 and the associated complexity is evaluated in Propo-
sition 2.3.

Algorithm 1 constructs a set of s-sparse vectors with the largest
Dx values. At each iteration, the new set of non-identifiable k-sparse
vectorsΣ(k)

max is built from the previous vector setΣ(k−1)
max (e.g. set of

vectors with a sparsity degree k − 1). It results that each step looks
for the k-sparse vectors x̃ such that x̃ = x + o∆i where x denotes
a (k-1)-sparse vector from Σ(k−1)

max , o ∈ {−1,+1} and∆i is a Dirac
vector at the location i. In Algorithm 1, the notation argmax[R]

(resp. argmax[Q]) involves to keep theR indexes and signumwhich

lead to the maximum ‖d(x+o∆i)‖2 (resp. theQ vectors which lead
to the maximum ‖d(x)‖2).

Algorithm 1 [13] - Extract sparse vectors with the large Dx.
Set the pruning rateQ and the extension rate R,
Set the sparsity degree S,
Set Σ(1)

max = {∆1, . . . ,∆N},
For k = 2, . . . , S


Σmax = ∅,

For every x ∈ Σ(k−1)
max



(Î, Ô) = argmax[R]

i/∈I(x);o∈{−1,+1}
‖d(x+ o∆i)‖2

For j ∈ {1, . . . , R}
( Σmax = Σmax ∪ {x+ Ôj∆Îj

}

Set Σ(k)
max = argmax[Q]

x∈Σmax

‖d(x)‖2

Proposition 2.3 The iteration complexity of Algorithm 1 is

O
(
2Q(N − k + 1)(N(k + 1) + k3)

)
* O(CN

k ).

Regarding Proposition 2.3, it appears that the computational cost
of each iteration is too high to be used in real experiments. However,
it is possible to write [13, Proposition 4]:

‖d(x̃)‖22 = ‖d(x)‖22 + ‖ãi‖
2
2| 〈d(x), ai〉 − o|2 (2)

where x denotes a k-sparse vector with the support I , o ∈ {−1,+1},
x̃ denotes a (k+1)-sparse vector with the support I ∪ {i}, and
ãi ∈ Span (aj , j ∈ I ∪ {i}) such that 〈ãi, ai〉 = 1, and, for every
j ∈ I , 〈ãi, aj〉 = 0. Note that 〈·, ·〉 denotes the scalar product. An
illustration of ãi is given in Figure 1(c). An accelerated version of
Algorithm 1 for random matrices was proposed in [13] by making
the assumption that ‖ãi‖2 is close to 1. In the next section, we refer
to this accelerated version by Algorithm 1bis.

3. EVALUATE SPARSITY IN A DETERMINISTIC
CONTEXT

In some real applications such as tomographic imaging, the inversion
problem issue does not involve a random system matrix. Thus, an in-
teresting question is how to get such an efficient algorithm consider-
ing a deterministic matrix. Moreover, it can be noticed that the poly-
tope theory proposed by Donoho is not adapted to the noisy case.
Another natural question is how to introduce robustness to noise. In
this section, an adaptation of Algorithm 1 in a deterministic context
is proposed and the noisy case is handled via the derivation of a new
criterion based on Fuchs/Tropp theorems [7, 8] .

3.1. Adaptation of Algorithm 1 to deterministic matrices

For deterministic matrices, the accelerated version of Algorithm 1
can no longer be used due to the fact that ‖ãi‖2 cannot be discarded.
However, in order to reduce the computational cost of Algorithm 1
(stated in Proposition 2.3), we consider Equation (2) and give the
closed form of ‖ãi‖2.

Proposition 3.1 Let ãi ∈ Span (aj , j ∈ I ∪ {i}) and such that
〈ãi, ai〉 = 1 and 〈ãi, aj〉 = 0, for every j ∈ I . It results that

ãi =
ai − AI(A∗

IAI)−1A∗
Iai

〈ai, ai − AI(A∗
IAI)−1A∗

Iai〉
. (3)

860



a2

a3

−a1

−a2

−a3

a1

a2

a3

−a1

−a2

−a3

a1

d(x)

Hx

1
‖d(x)‖2

a2

a3

−a1

−a2

−a3

a1

ã2
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Fig. 1. Illustration relative to the polytope formed by taking the convex hull of the 2N points (±ai) in RM .

The computation of d(x̃) can thus be expressed as a function
of d(x) and ãi. For each sparsity degree k in Algorithm 1, this
expression leads to the computation of Q matrix inversions of size
(k− 1)× (k− 1) rather thanQ× (N − k)matrix inversions of size
k × k. The proposed algorithm is detailled in Algorithm 2 and the
associated computational cost is specified in Proposition 3.2.

Algorithm 2 Accelerated version of Algorithm 1 for deterministic
matrices.
Set the pruning rateQ and the extension rate R,
Set the sparsity degree s,
Set Σ(1)

max = {∆1, . . . ,∆N},
For k = 2, . . . , s


Σmax = ∅,
For every x ∈ Σ(k−1)

max


Compute the matrix inversion involved in (3)
(Î, Ô) = argmax[R]

i/∈I(x);
o∈{−1,+1}

‖d(x)‖22 + ‖ãi‖22| 〈d(x), ai〉 − o|2

For j ∈ {1, . . . , R}
( Σmax = Σmax ∪ {x+ Ôj∆Îj

}

Set Σ(k)
max = argmax[Q]

x∈Σmax

‖d(x)‖2

Proposition 3.2 The iteration complexity of Algorithm 2 is

O
(
Q(N(k − 1) + (k − 1)3) + 2Q(N − (k − 1))(N(k + 4))

)

* O
(
2Q(N − k + 1)(N(k + 1) + k3)

)

In Figure 2, we compare the original algorithm (Algorithm 1),
the accelerated version of this algorithm designed for random matri-
ces (Algorithm 1bis), and the proposed accelerated version devoted
to the deterministic matrices (Algorithm 2). The evaluation of the
proposed algorithm is presented both in a context of random matrix
and of tomography, i.e. A denotes either a Radon transform (this
matrix is obtained with the MATLAB implementation of the Radon
transform) where N = 20 × 20 andM = 198 (that corresponds to
4 angles) or a random matrix of the same size. We compare these
algorithms in terms of computation time and of maximum extracted
Dx values. The pruning rate Q and the extension rate R are fixed
to Q = N and R = 1. It appears that in a deterministic con-
text (bottom figures), the extraction performances (i.e. find sparse
vectors with large Dx) of Algorithm 2 are similar to those of Al-
gorithm 1 with a much better convergence rate while the extraction

performance are better than the accelerated version considering Al-
gorithm 1bis. However, note that in a random context (top figures),
the proposed approach leads to smaller improvements. To sum up,
these results illustrate the relevance of the proposed algorithm in or-
der to easily handle deterministic matrices with higher dimensional-
ity.

3.2. Extract sparsity with Algorithm 2

Considering the tomography-like experiment detailed above, we
present in Figure 3 the reconstruction results obtained by !1-
minimization for vectors with large Dx considering different spar-
sity degrees (i.e. vectors in Σ(k)

max). We also present the obtained
reconstruction vectors with small Dx that require to compute the
“minimum version of Algorithm 2” (i.e. vectors choose in Σ(k)

min).
In these experiments the !1-minimization algorithm is FISTA [3]
and the stopping criterion takes in consideration the evolution of the
relative error between x and x̂ (< 10−10) as well as the iteration
number (< 106).

Algorithm 2 allows us to extract k-sparse vectors with the largest
value of Dx. It results that if the vector x ∈ Σ(k)

max having the largest
Dx value cannot be recovered by !1-minimization, a good approxi-
mation of the sparsity degree s for which every s-sparse vectors
can be reconstructed by !1-minimization from z = Ax is the
largest s < k.

3.3. Noisy case

We have mentionned in the introduction that Fuchs [7] and also
Tropp [8] proposed a sufficient condition in order to recover sparse
vectors by !1-minimization. Contrary to Theorem 2.2, this condi-
tion is not a necessary condition but it has the nice property that it
can be extended in order to take into account the robustness w.r.t
noise. Here, we propose a new result inspired by Fuchs/Tropp result
which allows us to easily control the reconstruction error in the noisy
case.

Proposition 3.3 Let I ⊂ {1, . . . , N} denote a set of index such that
|I | = s and let J = {1, . . . , N} \ I . Let

ERC(I) = max
j∈J

‖(A∗
IAI)

−1A∗
Iaj‖1. (4)

We assume that:
1) ERC(I) < 1,
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2) γ >
maxj∈J ‖aj‖2‖n‖2

1−ERC(I) .
Then, it results that the support of the solution x̂ of

argmin
x∈RN

1
2
‖y − Ax‖22 + γ‖x‖1, (5)

is included in the support of x and

‖x̂− x‖2

≤
(
λmin(A

∗
IAI)

)−1

(

‖A∗
In‖2 +

√
|I |maxj∈J ‖aj‖2‖n‖2

1− ERC(I)

)

.

4. EXPERIMENTAL RESULTS

We consider a problem of few angle tomography for sparse data.
It appears that some industrial materials which requires to be stud-
ied through a tomographic process exhibit sparsity properties. The
goal of this experiment is to design the system matrix (i.e. find the
adapted number of views) according to a given sparsity degree.

The system matrix A is associated to a Radon tranform. The
MATLAB implementation makes it possible to select the number
and the location of the polar angles (between 0o and 180o). In this
experiment we fix the angle between two views. The experiments
have been held for images of size N = 32 × 32. Algorithm 2 is
successively employed with a system matrix associated to 6 view
angles (M = 294), 9 view angles (M = 441), and 12 view angles
(M = 588). Moreover, due to the positivity of the data, o = +1 in
Algorithm 2.

In Table 1, we evaluate the sparsity degree allowing us to recover
every sparse vectors. The first row details the state-of-the-art results
related to the coherence [7] such that:

s <
1
2

(
1 +

1
µ(A)

)
where µ(A) = max

< ai, aj >
‖ai‖22‖aj‖22

.

The second row presents the approximated value of the sparsity de-
gree extracted by considering the proposed approach described in
Section 3.2.

In Table 2, we evaluate the sparsity degree allowing us to recover
every sparse vectors in the noisy case. We have filled in the table in
considering Proposition 3.3 where I denotes the support of the vec-
tor x ∈ Σ(s)

max, extracted with Algorithm 2, with the largest Dx. The
values of ‖A∗

In‖2 and ‖n‖2 are obtained by a Monte-Carlo process
with 100 realizations of a vector n ∼ N (0,σ2). The robustness
to noise expressed by Proposition 3.3 requires to insure the conver-
gence inside the support. This is a strong condition and it explains
why the extracted sparsity is small compare to the results presented
in Table 1.

5. CONCLUSION

We propose an efficient method to upper bound the sparsity de-
gree s for which every s-sparse vectors can be reconstructed by !1-
minimization according to a specific system matrix. Such a value is
important to know in a context where we want to be sure that !1-
minimization leads to the exact true sparse solution or, in presence
of noise, to a solution for which we control the error.

Note that the proposed method does not directly give a relation
between the sparsity and the size of the matrix but one might con-
struct it by considering system matrices A with different sizes.

In a future work, a parallel implementation will be done in order
to extract the sparsity degree for real tomography matrices. More-
over, we should notice that this approach can be considered for var-
ious contexts in inverse problems such as restoration or inpainting,
and also in the case whereAmodels the product of the systemmatrix
with a frame transform.
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6 views 9 views 12 views
(M = 294) (M = 441) (M = 588)

Sparsity
(Coherence) 2 3 5
Sparsity

(Proposed method) 39 120 144

Table 1. Sparsity s allowing us to recover every s-sparse vectors
by !1-minimization in the absence of noise consideration. The sec-
ond row presents the approximation of the sparsity obtained with the
proposed approach. Results for three different configurations of the
tomography-like matrix A.
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Fig. 2. Algorihm 1 (solid black), Algorithm 1bis (dash-dotted blue), Algorithm 2 (dash-dotted red). The bottom figures present the results
obtained with a tomography-like matrix while the top figures illustrate the results for a normalized random matrix.

x ∈ Σ(5)
max x ∈ Σ(10)

max x ∈ Σ(50)
max x ∈ Σ(5)

min x ∈ Σ(10)
min x ∈ Σ(50)

min

Original x Original x Original x Original x Original x Original x
Dx = 3.8 Dx = 14.8 Dx = 1.3× 104 Dx = 0.7 Dx = 0.8 Dx = 1.3

Reconstructed x̂ Reconstructed x̂ Reconstructed x̂ Reconstructed x̂ Reconstructed x̂ Reconstructed x̂

Fig. 3. Reconstruction results from z = Ax for sparse vectors with s = 5, s = 10, and s = 50 extracted with Algorithm 2 (1-3 columns) or
with the “minimum version of Algorithm 2” (4-6 columns).

6 views 9 views 12 views
(M = 294) (M = 441) (M = 588)

Error =0
σ2 = 0 11 12 12

Error ≤ 10−5

σ2 = 10−4 8 10 10
Error ≤ 10−1

σ2 = 10−2 8 10 10

Table 2. Sparsity s allowing us to recover every s-sparse vectors by !1-minimization with noise consideration and thus Fuchs/Tropp criterion.
Results for three different configurations of the tomography-like matrix A.
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