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ABSTRACT

In this paper, we propose a 3rd-order nonlinear IIR filter for
compensating for nonlinear distortions of loudspeaker sys-
tems. The 2nd-order nonlinear IIR filter based on the Mirror
filter is used for reducing nonlinear distortions of loudspeaker
systems. However, the 2nd-order nonlinear IIR filter can-
not reduce nonlinear distortions at high frequencies because
it does not include the nonlinearity of the self-inductance of
loudspeaker systems. On the other hand, the proposed fil-
ter includes the effect of such self-inductance and thus can
reduce nonlinear distortions at high frequencies. Experimen-
tal results demonstrate that the proposed filter can realize a
reduction by 4 dB more than the conventional filter on inter-
modulation distortions at high frequencies.

Index Terms— Loudspeaker system, Nonlinear distor-
tion, Nonlinear IIR filter, Mirror filter

1. INTRODUCTION

The fundamental principle of loudspeaker systems has not
changed since their invention. Loudspeaker systems employ
a very complex structure to transform an electric signal into a
mechanical vibration that generates acoustic waves. Nonlin-
ear distortions are common in the vicinity of the lowest reso-
nance frequency for electrodynamic loudspeaker systems that
are widely used at present. This is because of the nonlinear-
ity of the voice coil driving system and the mechanical non-
linearity of the edge and damper that support the diaphragm
[1]. It is clear that these distortions lead to the degradation of
sound quality. It seems impossible to compensate these dis-
tortions completely by only structural improvements. There-
fore, some researchers have attempted to compensate nonlin-
ear distortions by digital signal processing [2, 3, 4]. One in-
teresting approach to compensating nonlinear distortions is
to employ the 2nd-order nonlinear IIR filter [5] based on the
Mirror filter [6]. The 2nd-order nonlinear IIR filter is derived
from a nonlinear differential equation of loudspeaker systems
and includes the nonlinearities of the force factor and stiff-
ness of such systems. However, it cannot compensate nonlin-
ear distortions at high frequencies. This is because the 2nd-

order nonlinear IIR filter does not include the nonlinearity of
the self-inductance of loudspeaker systems. In this paper, we
propose a 3rd-order nonlinear IIR filter to compensate non-
linear distortions at high frequencies. This filter includes the
nonlinearity of the self-inductance of loudspeaker systems.

2. THIRD-ORDER NONLINEAR IIR FILTER

The 3rd-order nonlinear IIR filter is based on Mirror filter [6].
Mirror filter employs nonlinear parameters that depend on the
displacement of the diaphragm and cause the nonlinearity of
loudspeaker systems. Mirror filter can compensate the nonlin-
earity of the force factor of the voice coil and magnetic circuit,
the mechanical stiffness of the surround and spider, and the
self-inductance of the voice coil. It is realized using the 2nd-
order nonlinear IIR filter [5] derived from the nonlinear dif-
ferential equation without the nonlinearity of self-inductance.
Since the self-inductance governs a loudspeaker’s behavior
at high frequencies, the 2nd-order nonlinear IIR filter can-
not reduce the nonlinear distortions at high frequencies. On
the other hand, since the 3rd-order nonlinear IIR filter is de-
rived from the nonlinear differential equation that includes the
nonlinearity of self-inductance, it can reduce nonlinear distor-
tions at high frequencies.

When the displacement of the diaphragm of a loudspeaker
system is small, the vibration system of the loudspeaker sys-
tem can be approximated as a single vibration system around
the lowest resonance frequency. The motion equation is given
by a 2nd-order linear differential equation with the linear pa-
rameters of the loudspeaker system as follows:

Bl0i(t) = m0ẍ + K0x + Rmẋ, (1)

A0u(t) = Rei(t) + Bl0ẋ + L0
di

dt
, (2)

where u(t) is the input voltage, i(t) is the current, Bl0 is the
force factor, A0 is the gain of the analogue part, Re is the
electrical resistance of the voice coil, m0 is the mechanical
mass, K0 is the mechanical stiffness, Rm is the mechanical
resistance, and L0 is the self-inductance. In this case, the
displacement of the diaphragm, x(t), does not exhibit nonlin-
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earity. From eqs. (1) and (2), the differential equation eq. (3)
is derived as

G0u(t) = ẍ + ω2
0x +

ω0

Q0
ẋ + τ

d

dt

(
ẍ + ω2

0x +
ω0

Qm
ẋ

)
,

where

G0 =
Bl0A0

Rem0
ω0 =

√
K0

m0
Q0 =

√
m0K0

Rm + Bl20/Re
,

Qm =
√

m0K0

Rm
τ =

L0

Re
,

where τ is the time constant. From eq. (3), the linear displace-
ment is obtained as

x(t) = L−1 {Hx(s)} ∗ x(t), (3)

Hx(s) =
[
G0

/{(
s2 +

ω0

Q0
s + ω2

0

)

+τ

(
s3 +

ω0

Qm
s2 + ω2

0s

)}]
, (4)

Then, from Eq. (4), the linear displacement as the discrete
time is derived as

x(n) = z−1 {Hx(z)} ∗ x(n), (5)

Hx(z) = G0 ·
[
hx0 + hx1z

−1 + hx2z
−2 + hx3z

−3

1 + B1z−1 + B2z−2 + B3z−3

]
,(6)

where

hx0 =
hx1

3
=

hx2

3
= hx3 =

1
4f2

s

/
α,

α =
{

1 +
ω0

2Q0fs
+

ω2
0

4f2
s

}

+
2τ

Ts

{
1 +

ω0

2Qmfs
+

ω2
0

4f2
s

}
,

B1 =
{
−1 +

ω0

2Q0fs
+ 3

ω2
0

4f2
s

}/
α

+
2τ

Ts

{
−3 − ω0

2Qmfs
+

ω2
0

4f2
s

}/
α,

B2 =
{
−1 − ω0

2Q0fs
+ 3

ω2
0

4f2
s

}/
α

+
2τ

Ts

{
3 − ω0

2Qmfs
− ω2

0

4f2
s

}/
α,

B3 =
{

1 − ω0

2Q0fs
+

ω2
0

4f2
s

}/
α

+
2τ

Ts

{
−1 +

ω0

2Qmfs
− ω2

0

4f2
s

}/
α.

fs = 1/Ts is the sampling frequency. In this case, the force
factor, stiffness, and self-inductance of the voice coil become

nonlinear parameters and cause nonlinear distortions in loud-
speaker systems. The nonlinear parameters can be approxi-
mated using the following quadratic and cubic functions [1]:

Bl(x) = Bl0b(x) = Bl0(1 + b1x + b2x
2), (7)

K(x) = K0k(x) = K0(1 + k1x + k2x
2), (8)

L(x) = L0l(x) = L0(1 + l1x + l2x
2 + l3x

3), (9)

where b(x), k(x) and l(x) represent the nonlinearities of the
force factor, stiffness and self-inductance, respectively; these
are all dimensionless. The differential equations eqs. (1) and
(2) are rewritten as

Bl(x)i(t) = m0ẍ+K(x)x+Rmẋ − 1
2
iL(t)2

dL(x)
dx

, (10)

A0u(t) = Rei(t)+Bl(x)ẋ+
dL(x)iL(t)

dt
, (11)

Bl(x)iL(t) = m0ẍ+K(x)x+Rmẋ, (12)

where iL(t) is the compensation current for self-inductance.
From eqs. (10) and (11), the following equation is derived.

G0b(x)uL(t) = ẍ + ω2
0k(x)x

+
{

1 +
(

1 − Q0

Qm

)(
b(x)2 − 1

)} ω0

Q0
ẋ

+ τ
dl(x)

dt

{
ẍ +

ω0

Qm
ẋ + ω2

0k(x)x
}

− τ
l(x)
b(x)

db(x)
dt

{
ẍ +

ω0

Qm
ẋ + ω2

0k(x)x
}

+ τ l(x)
{

˙̈x +
ω0

Qm
ẍ

+ω2
0k(x)ẋ + ω2

0

dk(x)
dt

x

}

− 1
2m0

{
A0

ReG0b(x)

}2

(
ẍ +

ω0

Qm
ẋ + ω2

0k(x)x
)2

dL(x)
dx

.

(13)

The nonlinear motion of loudspeaker systems is repre-
sented by eqs. (10) ∼ (12). In these equations, the displace-
ment x shows a nonlinear behavior. On the other hand, the
displacement x shows a linear behavior in eqs. (1) and (2). If
the displacement x of eqs. (10) ∼ (12) shows a linear behav-
ior, these equations can be treated as equations that show a lin-
ear behavior. Therefore, the 3rd-order nonlinear IIR filter can
be derived by substituting the linear displacement eq. (3) into
the nonlinear differential equation eq. (13). Figure 1 shows
the block diagram of the 3rd-order nonlinear IIR filter derived
according to the above procedure. The coefficients in Fig. 1
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Fig. 1. Block diagram of the 3rd-order nonlinear IIR filter.

are given by

Ci(x(n)) = hai + ω2
0k(x(n))hxi

+
{

1 +
(

1 − Q0

Qm

)(
b(x(n))2 − 1

)} ω0

Q0
hvi

+τ

{
Δ {l(x(n))} − l(x(n))

b(x(n))
Δ {b(x(n))}

}

×
{

hai +
ω0

Qm
hvi + ω2

0k(x(n))hxi

}

+τ l(x(n))
{

hji +
ω0

Qm
hai + ω2

0k(x(n))hvi

+ω2
0Δ {k(x(n))} hxi

}
(i = 0, 1, 2, 3),

hv0 = hv1 = −hv2 = −hv3 =
1

2fs

/
α,

ha0 = −ha1 = −ha2 = ha3 = 1
/

α,

hj0 = −hj1

3
=

hj2

3
= −hj3 = 2fs

/
α,

CLi(x(n)) = hai +
ω0

Qm
hvi + ω2

0k(x(n))hxi,

(i = 0, 1, 2, 3),

G(x(n)) =
A0τ

2Bl0

1
b(x)3

{
l1 + 2l2x(n) + 3l3x(n)2

}
,

where “Δ { }” is the difference value. This filter generates a
compensation signal in two steps. First, the linear displace-
ment x(n) is calculated. Then, the coefficients depending on
the displacement x(n) are calculated. These coefficients in-
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Fig. 2. Block diagram of the 2nd-order nonlinear IIR filter.

Table 1. Specifications of a loudspeaker system.
Diameter 12 cm
Rated power 15 W
Electrical resistance 6.5 Ω
Enclosure volume 7.7 l
Enclosure type Closed-box

clude the effects of the linear displacement, velocity, acceler-
ation and derivation of acceleration. If the self-inductance of
the loudspeaker system is ignored, the block diagram shown
in Fig. 1 is reduced to that shown in Fig. 2, which represents
the 2nd-order nonlinear IIR filter, that is, the proposed non-
linear IIR filter includes the conventional nonlinear IIR filter.

3. EXPERIMENTAL RESULTS

We conducted experiments on compensating the nonlinear
distortion of a loudspeaker system. The specifications of
the loudspeaker system are shown in Table 1. The 2nd- and
3rd-order nonlinear IIR filters need the linear and nonlinear
parameters of the loudspeaker system. These parameters
were estimated by the parameter estimation method for a
closed-box loudspeaker system using Volterra kernels [7].
This method is based on the calculation of the compensa-
tion amount of nonlinear distortions of the nonlinear IIR
filter. The initial linear parameters were determined from
impedance characteristics, as shown in Table 2. Tables 3
and 4 show the linear parameters obtained by the estimation
method. The nonlinear parameters were estimated as

Bl2(x) = Bl0,2(1 − 88x− 49700x2), (14)
K2(x) = K0,2(1 + 23x + 49800x2), (15)
Bl3(x) = Bl0,3(1 − 89x− 49700x2), (16)
K3(x) = K0,3(1 + 25x + 49800x2), (17)

L3(x) = L0,3(1 − 80x− 7700x2 + 53500x3), (18)

where the subscripts “2” and “3” indicate the “2nd-order non-
linear IIR filter” and “3rd-order nonlinear IIR filter”, respec-
tively.
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Table 2. Initial linear parameters determined from impedance
characteristics.

ω0 647 rad/sec
Q0 0.91
Qm 3.98
Re 7.75 Ω
Rm 0.54 N · sec/m
m0 3.33 ×10−3 kg
K0 1393 N/m
Bl0 3.75 Wb/m
L0 0.39 mH

Table 3. Linear parameters of the 2nd-order nonlinear IIR
filter.

ω0,2 647 rad/sec
Q0,2 0.91
Qm,2 3.98
Re,2 7.75 Ω
Rm,2 0.56 N · sec/m
m0,2 3.44 ×10−3 kg
K0,2 1440 N/m
Bl0,2 3.82 Wb/m

Table 4. Linear parameters of the 3rd-order nonlinear IIR
filter.

ω0,3 647 rad/sec
Q0,3 0.91
Qm,3 3.98
Re,3 7.75 Ω
Rm,3 0.57 N · sec/m
m0,3 3.50 ×10−3 kg
K0,3 1466 N/m
Bl0,3 3.85 Wb/m
L0,3 0.39 mH

The 2nd- and 3rd-order nonlinear IIR filters are realized
using the above parameters, and the effectiveness of compen-
sating the nonlinear distortion of the loudspeaker system is
compared between these filters. The measurement conditions
are shown in Table 5. The sound pressure characteristics of
nonlinear distortions are shown in Fig. 3, and the average non-
linear distortion compensation amounts are shown in Table 6.
As observed in Fig. 3 and Table 6, the 3rd-order nonlinear IIR
filter can reduce the intermodulation distortions by about 4 dB
at high frequencies and is superior to the 2nd-order nonlinear
IIR filter. However, the harmonic distortion is not reduced
at high frequencies. This is because the harmonic distortion
is smaller than the intermodulation distortions. On the other

Table 5. Measurement conditions for compensating nonlinear
distortions.

Input signal Swept sinusoidal wave
Sampling frequency fs 32000 Hz
Fixed frequency m1 150 Hz
Swept frequency m2 150 ∼ 8000 Hz
Average 15
Input voltage 5.0 V

Table 6. Comparison of average nonlinear distortion com-
pensation amounts between the 2nd- and 3rd-order nonlinear
IIR filters.

2nd-order 3rd-order
2m2 characteristic
150Hz ∼ 350Hz 9.48 dB 12.27 dB
m1 + m2 characteristic
150Hz ∼ 1kHz 9.87 dB 14.95 dB
1kHz ∼ 8kHz 2.67 dB 4.12 dB
m2 − m1 characteristic
150Hz ∼ 1kHz 5.81 dB 7.94 dB
1kHz ∼ 8kHz 1.90 dB 4.06 dB

hand, the 3rd-order nonlinear IIR filter can also reduce non-
linear distortions at low frequencies and is superior to the 2nd-
order nonlinear IIR filter. Hence, the 3rd-order nonlinear IIR
filter is effective for compensating nonlinear distortions of the
loudspeaker system.

4. CONCLUSIONS

In this paper, we proposed a 3rd-order nonlinear IIR filter,
and compared its compensation ability for nonlinear distor-
tions of a loudspeaker system with that of the 2nd-order non-
linear IIR filter. Experimental results indicated that the 3rd-
order nonlinear IIR filter can reduce the intermodulation dis-
tortion more effectively than the 2nd-order nonlinear IIR fil-
ter. Hence, we conclude that the 3rd-order nonlinear IIR filter
is effective for compensating nonlinear distortions of loud-
speaker systems. In the future, we should improve the param-
eter estimation method to better compensate such nonlinear
distortions.
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(b) m1 + m2 characteristic.
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(c) m2 − m1 characteristic.
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Fig. 3. Comparison of the compensation abilities of nonlin-
ear distortions between the 2nd- and 3rd-order nonlinear IIR
filters.

1974


