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ABSTRACT

In this paper, we propose a distributed beamforming scheme

for the estimation of spatial fields (e.g. temperature, mois-

ture) with wireless sensor networks. The pre-coding scheme

allows for an over-the-air compressed representation of the

correlated set of spatial observations, which are encoded in

a number of consecutive sensor-to-gateway (GW) transmis-

sions. The ultimate goal is to minimize the distortion in the re-

constructed spatial field and, simultaneously, keep the number

of transmissions low (i.e. the compression ratio high). How-

ever, the design of the set of normalized pre-coders, for which

we derive a closed-form expression, and the corresponding

power allocation problems turn out to be coupled. By resort-

ing to a greedy power allocation strategy, both problems can

be iteratively and jointly solved. The performance of the pro-

posed pre-coding scheme is assessed by means of computer

simulations. Other compressed beamforming schemes requir-

ing channel inversion are used as a benchmark.

1. INTRODUCTION

In recent years, we have witnessed the emergence of the

paradigm of Machine-to-Machine (M2M) communications

[1].The M2M technical committee of ETSI (European Telecom-

munication Standards Institute) has proposed a hybrid archi-

tecture whereby cellular-enabled gateways (GW) act as traffic

aggregation and protocol translation points for their capillary

networks, typically based on short-range communication

technologies (e.g. sensor networks). This paper focuses on

the optimal design of such capillary extensions for environ-

mental monitoring applications.

Our goal is to accurately reconstruct a spatial field from

the samples collected by a number of sensing devices. Gast-

par et al proved in [2] that cooperative beamforming turns

out to be optimal when sensors intend to convey a common

message (observation) to a remote destination. Unfortunately,

this assumption does not hold here since our interest lies in

monitoring the spatial variations of the field. A straightfor-

ward (yet not very efficient) approach would be to dissemi-
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nate each observation to the rest of nodes prior to the beam-

forming stage. The inefficiency lies in the signalling overhead

that such exchanges entail [3] and, also, in the fact that part of

the exchanged information is known by the recipients (due to

correlation). To circumvent that, in scenarios where signals

are sparse, one can resort to compressed sensing techniques

[4]. The cooperative beamforming approach adopted here is,

thus, in stark contrast with the Amplify-and-Forward scheme

of [5] where sensor observations are transmitted over orthog-

onal channels with no compression strategy in place. As for

the fact that accurate phase synchronization over sensors is

needed for distributed beamforming, the interested reader is

referred to the synchronization strategy presented in [6].

In this paper, we propose an iterative greedy scheme al-

lowing us to simultaneously solve the distributed beamform-

ing (pre-coder) design and power allocation problems, which

are inter-twined. By doing so, we go one step beyond our

work in [?] which requires per-sensor channel equalization

prior to the compressed beamforming phase. For the partic-

ular case of Gaussian channels, the iterative algorithm turns

out to find the optimal solution, for which we also derive a

closed-form expression.

2. SIGNAL AND COMMUNICATION MODEL

Let X(s) be a spatial field defined over the two-dimensional

space R
2. We assume that X(s) is stationary, zero-mean and

Gaussian-distributed. The spatial field is sampled by a set of

N sensors located at s1, . . . , sN (locations are assumed to be

known), this yielding

xj , X(sj) ; j = 1, . . . , N. (1)

Consequently, the vector of observations x = [x1, . . . , xN ]T ,

where the variance of each component is σ2
x, is jointly

Gaussian and zero-mean too. For a specific set of loca-

tions, the elements of the covariance matrix Cx = E
[

xx
T
]

read [Cx]j,j′ = k (sj , sj′), where k (·, ·) denotes the co-

variance function of the spatial field. In addition, we let

{λ1, λ2, . . . , λN} denote the eigenvalues of Cx (without

loss of generality, we assume λ1 ≥ λ2 ≥ . . . ≥ λN ), and

{φ1,φ2, . . . ,φN} the corresponding eigenvectors.
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Fig. 1. Signal and communication model.

As shown in Fig. 1, sensors simultaneously transmit (i.e.

beamform) their observations to the GW . For the i-th trans-

mission, the received signal ri reads

ri =
N
∑

j=1

wi,jhjxj + ni = w
H
i Hx+ ni (2)

for i = 1, . . . , I , where wi = [wi,1, wi,2, . . . , wi,N ]
T

de-

notes the pre-coder1 (to be designed), the diagonal matrix

H = diag [h1, h2 . . . , hN ] gathers the (complex) sensor-to-

GW channel coefficients; and ni is additive white Gaussian

noise of variance σ2
n, that is, ni ∼ CN

(

0, σ2
n

)

. Further, we

assume slow fading conditions and, hence, the channel coeffi-

cients remain unchanged for the I consecutive transmissions.

From the I × 1 received vector r = [r1, . . . , rI ]
T

, the GW

attempts to estimate (reconstruct) the spatial field at the set of

sampled locations, namely, x̂(I) = [x̂
(I)
1 , . . . , x̂

(I)
N ]T where,

for notational convenience, we make it explicit the depen-

dency of the estimates on the total number of transmissions I .

In the sequel, we assume I ≤ N and, hence, r can be regarded

as a compressed representation of the observations vector x.

Due to channel impairments, noise and compression, the re-

sulting estimates are subject to some distortion which will be

characterized by the following quadratic metric:

D(I) ,
1

N

N
∑

j=1

E

[

∣

∣

∣x̂
(I)
j − xj

∣

∣

∣

2
]

. (3)

3. COMPRESSED TRANSMISSION

Our goal here is to find the set of pre-coders {w1, . . . ,wI}
and the associated transmit powers ρ = {ρ1, . . . , ρI} which

minimize the distortion in the reconstructed spatial field. To

start with, let r1:i−1 = [r1, r2, . . . , ri−1] denote the vector

with the first i−1 elements (transmissions) in r . From r1:i−1,

the GW provides an MMSE estimate of the observations vec-

tor which is given by the posterior mean, namely,

x̂
(i−1) = E {x|r1, r2, . . . , ri−1}

= Cxr1:i−1
C

−1
r1:i−1

r1:i−1, (4)

where, in the above expressions, we have introduced the

shorthand notation Cxr = E
[

xr
H
]

, and Cr = E
[

rr
H
]

to

1Notice that a different pre-coder is used for each transmission.

denote the corresponding covariance (subscripts have been

omitted for brevity). The normalized average distortion after

the (i− 1)-th transmission thus reads:

D(i−1) =
1

N
Tr
(

C
x|r1:i−1

)

(5)

where Tr (·) denotes and C
x|r = E

[

xx
T |r
]

the posterior co-

variance matrix. By using the i-th transmission (i.e. increas-

ing the number of transmissions by one), the current estimate

of the spatial field can be successively refined, namely,

x̂
(i) = E {x|r1, r2, . . . , ri−1, ri} (6)

= Cxr1:i
C

−1
r1:i

r1:i (7)

Since x and r1:i are jointly Gaussian, the following identity

holds

C
x|r1:i = C

x|r1:i−1
− E [xr∗i |r1:i−1]E

[

rix
T |r1:i−1

]

E [rir∗i |r1:i−1]
(8)

where2
E [xr∗i |r1:i−1] = C

x|r1:i−1
H

H
wi and

E [rir
∗
i |r1:i−1] = w

H
i HC

x|r1:i−1
H

H
wi + σ2

n. (9)

From (8) again, the distortion after the i-th transmission,

D(i) = 1
N
Tr
(

C
x|r1:i

)

, can be recursively expressed as:

D(i) = D(i−1) − 1

N
Tr

(

C
x|r1:i−1

H
H
wiw

H
i HC

x|r1:i−1

wH
i HC

x|r1:i−1
HHwi + σ2

n

)

= D(i−1) − 1

N

w
H
i HC

2
x|r1:i−1

H
H
wi

wH
i HC

x|r1:i−1
HHwi + σ2

n

. (10)

This allows us to find the i-th precoding vector such that it

successively (and optimally) refines the previous estimate of

the spatial field. In other words, the one which results into the

lowest possible distortion D(i) given D(i−1).

3.1. Optimal pre-coders

From (10), the i-th pre-coding vector is given by the solution

to the following optimization problem:

max
wi

w
H
i HC

2
x|r1:i−1

H
H
wi

wH
i HC

x|r1:i−1
HHwi + σ2

n

s.to ‖wi‖22 ≤ ρi
σ2
x

with ρi denoting the power allocated to the i-th transmission:

N
∑

j=1

E

{

∣

∣w∗
i,jxj

∣

∣

2
}

= σ2
x ‖wi‖22 ≤ ρi. (11)

Clearly, the optimal solution will satisfy the above power con-

straint with equality and, thus, the optimization problem can

be re-written as

max
w̃i

w̃
H
i HC

2
x|r1:i−1

H
H
w̃i

w̃H
i

(

HC
x|r1:i−1

HH +
σ2
n
σ2
x

ρi
IN

)

w̃i

s.to ‖w̃i‖22 = 1

2For i = 1, the term C
x|r1:i−1

in (8) must be replaced by Cx.
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where w̃i ,

√

σ2
x

ρi
wi is the normalized pre-coder and IN

stands for the identity matrix of size N . Hence, the optimal

normalized pre-coder is given by

w̃
∗
i = λmax

{

HC
2
x|r1:i−1

H
H ,HC

x|r1:i−1
H

H +
σ2
nσ

2
x

ρi
IN

}

(12)

where λmax {A,B} stands for the generalized eigenvector as-

sociated to the largest generalized eigenvalue of matrices A

and B. This last expression reveals that the pre-coder de-

sign and power allocation problems (to be addressed in the

next subsection) are inter-twined: w̃∗
i depends not only on the

transmit power allocated to the i-th transmission (through ρi)
but, also, on the power allocated to all previous transmissions

(through C
x|r1:i−1

).

3.2. Optimal power allocation

The optimal power allocation strategy ρ = {ρ1, . . . , ρI} can

be found by solving

min
ρ1,...,ρI ,I

D(I) s.to

I
∑

i=1

ρi = Pt

with Pt denoting the total transmit power. It is worth not-

ing that the minimization is over the set of transmit powers

{ρi}Ii=1 and the number of transmissions I . This, along with

the coupling of the pre-coder design and power allocation

problems, renders the problem not solvable analytically for

the general case. However, a closed form solution exists for

Gaussian channels, as the next section illustrates.

4. PARTICULAR CASE: GAUSSIAN CHANNELS

A closed-form solution will be found in two steps. First, we

propose an iterative (and greedy) algorithm. Not only shall

we realize that this approach is optimal for Gaussian channels

but, also, the insights gained will allow us to propose an ex-

tension (and some justification) for the general case addressed

in Section 5.

4.1. Iterative algorithm

For Gaussian channels, we have H = IN and, thus, equation

(12) can be re-written as3

w̃l = λmax

{

C
2
x|r1:l−1

,C
x|r1:l−1

+
σ2
nσ

2
x

ρl
IN

}

(13)

= λmax

{

C
x|r1:l−1

}

(14)

where the second equality follows from elementary properties

of matrix algebra. Unlike in the general case, the design of

the normalized pre-coder w̃∗
l here is no longer coupled with

the power to be allocated to the l-th transmission itself. This

3For notational convenience, the transmission index i is replaced here by

the iteration index l (see next paragraphs).
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Fig. 2. Graphical representation of the greedy iterative power

allocation scheme (Gaussian case)

considerably simplifies the problem at hand. In order to si-

multaneously solve the pre-coder design and power allocation

problems, we propose to iteratively allocate transmit power in

a greedy manner. To that aim, we define a power token ǫ as an

indivisible and (sufficiently) small fraction of the total trans-

mit power, namely ǫ , PT /L, where L ≫ 1 stands for the

total number of power tokens or iterations. For the first it-

eration (l = 1), it follows from (14) that w̃∗
1 = φ1, that is,

the eigenvector associated to λ1, the largest eigenvalue of Cx.

From equations (8)-(9) and since w̃∗
1 = φ1, it follows that

C
x|r1 = Cx − ρ1λ

2
1

ρ1λ1 + σ2
nσ

2
x

φ1φ
H
1 (15)

and, hence, the eigenvectors of matrices C
x|r1 and Cx are

identical. Clearly, this also applies to all matricesC
x|r1:l to be

drawn in subsequent iterations (but not for the general case,

as will be discussed later). Since ρ1 = ǫ, from (15) we have

that the eigenvalues of C
x|r1 , denoted by λ

(1)
1 , λ

(1)
2 , . . . , λ

(1)
N

verify

λ
(1)
1 = λ1 −

ǫλ2
1

ǫλ1 + σ2
nσ

2
x

(16)

whereas λ
(1)
k = λk for all k 6= 1. The power token in the sec-

ond iteration will be allocated to the eigenvector associated to

the largest eigenvalue out of λ
(1)
1 . . . λ

(1)
N . This iterative pro-

cedure is illustrated in Fig. 2. Note that, from (16), λ
(1)
1 is not

necessarily the largest eigenvalue of C
x|r1 . In this case, the

power token for the second transmission goes to a so far inac-

tive eigenvector/eigenmode (e.g. λ
(1)
2 in Fig. 2). Otherwise, if

λ
(2)
1 continues to be the largest eigenvalue, we have w̃∗

2 = φ1

again. Accordingly, it can be proved that the eigenvalue of the

resulting covariance matrix C
x|r1,r2 denoted by λ

(1)
1 reads

λ
(2)
1 = λ1 −

(ρ1 + ρ2)λ
2
1

(ρ1 + ρ2)λ1 + σ2
nσ

2
x

(17)

Clearly, this is equivalent to allocate a power of ρ1 + ρ2 = 2ǫ
and transmit just once with w̃

∗
1 = φ1. After L iterations, and

786



since the optimal pre-coders w̃∗
l to be used in any transmis-

sion necessarily belong to the set of N eigenvectors of the un-

conditional covariance matrix Cx, this iterative scheme leads

to the waterfilling (and, thus, optimal) solution of the right-

most plot in Figure 2. This holds true as long as the power

tokens are small enough since this allows all the eigenmodes

to accurately reach the common waterlevel.

4.2. Equivalent closed-form solution

From all the above, the optimization problem (13) can be re-

written as

min
ρ1,...,ρN

σ2
x − 1

N

N
∑

i=1

ρiλ
2
i

ρiλi + σ2
nσ

2
x

(18)

s.t.

N
∑

i=1

ρi ≤ Pt, (19)

which (i) entails a minimization of the score function D(N)

on {ρi}Ni=1 only (N is fixed now); and (ii) is convex. The

corresponding waterfilling-like solution is given by

ρ∗i =

[

σn√
µ
− σ2

nσ
2
x

λi

]+

; i = 1, . . . , N. (20)

where [x]
+

, max {x, 0} and µ denotes the Lagrange mul-

tiplier associated to the power constraint, which can be com-

puted as follows:

µ =





Pt

σ2
x

+
∑K

i=1
σ2

n
σ2

x

λi

Kσn





−2

. (21)

In this last expression, K stands for the largest number of

transmissions such that (i) the optimal scaling factors verify

ρ∗i = σw√
µ
− σ2

n

λi
≥ 0 for i = 1, . . . ,K; and (ii) the sum-power

constraint holds with equality, i.e.
∑K

i=1 ρ
∗
i = Pt. In other

words, the optimal number of transmissions is given by I∗ =
K and, necessarily, I∗ ≤ N (i.e. attains some compression).

5. GENERAL CASE: ARBITRARY CHANNELS

The iterative greedy algorithm to be presented here is largely

inspired in that of Section 4.1. However, the fact that H is

no longer an identity matrix has a substantial impact on the

optimization problem. More precisely,

1. There is no straightforward relation between the solu-

tion to the generalized eigenvalue problem in (12) for

different values of the transmission index i (or itera-

tion index l). Here, neither eigenvectors are identical,

nor only one of the eigenvalues changes through con-

secutive iterations. Essentially, all of them must be re-

computed anew.

2. The design of the normalized pre-coder for the l-th it-

eration does depend on its own power token (and pre-

ceding ones too).

3. The problem requires an explicit optimization on I
since it does not follow from the iterative power allo-

cation or waterfilling scheme. As far as this paper is

concerned, we resort to an exhaustive search over I .

4. The optimal number of transmissions I∗ can (poten-

tially) be larger than N since it is not upper bounded

by the total number of different eigenvectors of Cx.

All this, in turn, calls for a number of adaptations in the iter-

ative scheme. As in the Gaussian case, however, the transmit

power is allocated to the set of pre-coders on a token by to-

ken basis. In addition, no changes of previously allocated

tokens are allowed (not an exhaustive search). For the sake

of clarity, we introduce the shorthand notation φl−1
1 (ρ) to de-

note the eigenvector associated to the largest eigenvalue of

the generalized eigenvalue problem in (12). The superscript

l− 1 accounts for the number of conditioning elements in the

covariance matrix C
x|r1:l−1

in (12), while ρ is the accumu-

lated power allocated to such eigenvector (including the cur-

rent iteration). So, we fix the number of transmissions I and

describe herinafter the iterative scheme for the I = 3 case:

First iteration (l = 1): The first power token ǫ is nec-

essarily allocated to φo
1(ǫ). It is retained as the best pre-

coder/power allocation combination so far and, hence, will

be part of all the combinations in subsequent iterations.

Second iteration (l = 2): The allocation of the new

power token results into two possible combinations of pre-

coders and powers (i) {φo
1(ǫ+ ǫ)}, one transmission (pre-

coder); or (ii)
{

φo
1(ǫ),φ

1
1(ǫ)

}

, two transmissions. The re-

sulting distortion is then computed for both combinations ac-

cording to (10). Assume that (ii) attains the lowest distortion

so far and, thus, this combination is retained.

Third iteration (l = 3): There exist three possible

combinations for the allocation of the new power token,

namely, (i)
{

φo
1(ǫ + ǫ),φ1

1(ǫ)
}

, with two transmissions; or

(ii)
{

φo
1(ǫ),φ

1
1(ǫ + ǫ)

}

, two transmissions again; or (iii)
{

φo
1(ǫ),φ

1
1(ǫ),φ

2
1(ǫ)

}

, with three transmissions. Assume

that (iii) attains the lowest distortion this causing the max-

imum number of transmissions (I=3) to be reached. From

now on, no additional eigenvectors will be tried in subsequent

iterations. However, some of the eigenvectors selected so far

might need to be re-computed if any of the subsequent power

tokens is allocated to a preceding one. The assumption here

is that the greedy allocation of previous power tokens contin-

ues to be optimal for the re-computed eigenvectors, which is

reasonable as long as ǫ is small.

The algorithm goes on until the L power tokens have been

allocated. The (at most) I eigenvectors retained in the last it-

eration will be used as the actual set of pre-coders {w̃i}Ii=1

along with the allocation of power tokens over such eigenvec-
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tor set. Yet no optimality can be claimed for this approach, it

exhibits a remarkable performance (see next section).

6. SIMULATION RESULTS AND CONCLUSIONS

The simulation scenario consists of N sensors deployed over

a 10 × 10 rectangular area. As in [7], the spatial field is

modeled as a Gaussian Markov Ornstein-Uhlenbeck process

with correlation (covariance) function given by k (si, sj) =
σ2
x exp (−θ‖si − sj‖2). In all cases, the variance of the spa-

tial field and the additive noise read σ2
x = 1 and σ2

n = 1, re-

spectively. Unless otherwise stated, the sensor-to-GW chan-

nels are assumed to be Rayleigh-fading.

Figure 3 shows some results for a setting with a ran-

dom sensor deployment (N = 10 sensors, uniform distribu-

tion). First, we observe that the performance of the iterative

(greedy) solution is virtually identical to the optimal one (nu-

merically computed with Matlab). As it follows from (10),

distortion decreases with the number of transmissions al-

though beyond some point (big round markers on the curves)

the curves saturate. This corresponds to the solution with the

highest compression level (or, equivalently, lowest latency)

for a given transmit power. In a practical implementation,

no additional values of I would be searched for as soon as

the decrease in distortion with respect to the previous value

would be within a prescribed margin. By increasing the

total transmit power available, a larger number of ”useful”

transmissions (pre-coders) can be afforded which effectively

convey non-redundant information to the GW.

In Figure 4, we depict the reconstruction distortion aver-

aged over channel realizations. Sensors here are deployed de-

terministically in a rectangular grid (N = 25 sensors in total).

Unsurprisingly, distortion is lower when the field is highly

correlated (θ = 0.01). In this case, the available transmit

power is allocated to a reduced number of pre-coders (since

compression level can be higher) this resulting into a higher

SNR per transmission. As a first benchmark we have used

the scheme in our previous work [?] where a per-sensor chan-

nel equalization is carried out prior to applying a (distributed)
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Fig. 4. Average distortion vs transmit power (N = 25)

Karhunen-Loeve transform to the set of observations (i.e. di-

rectly using the eigenvectors of the covariance matrix of the

spatial field, Cx). The use of the proposed successive refine-

ment technique, by which knowledge on the statistical prop-

erties of the spatial field and the channel gains are jointly ex-

ploited for pre-coder design (rather than separately as in [?])

definitely pays off. As a second benchmark, we also depict

the distortion attained in a scenario with Gaussian channels

and the optimal pre-coding solution computed in Section 4.2.

As expected, fading has a negative effect in terms of distor-

tion since it has to be (partly) compensated for by the power

allocation strategy.
In conclusion, the proposed iterative greedy scheme al-

lows us to simultaneously (and effectively) solve the pre-
coder design an power allocation problems for the general
case. Performance is virtually identical to that of the optimal
solution computed numerically. The gain with respect to
other precoding schemes requiring per-sensor channel equal-
ization is large.
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