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ABSTRACT

In this paper a dynamic stochastic resonance (DSR)-based
watermark extraction technique from audio signal using sin-
gular value decomposition (SVD) has been presented. Water-
mark embedding has been done by weighted addition of the
binary watermark in the singular values of the audio signal.
DSR has been used in the extraction process to improve the
authenticity of the extracted watermark by utilizing the noise
or degradation introduced during different signal processing
attacks. DSR is an iterative process that tunes the coefficient
of possibly attacked watermarked audio signal so that effect
of noise is suppressed and hidden information is enhanced.
An adaptive optimization procedure has been adopted for
selection of bistable parameters to achieve maximum corre-
lation coefficient under minimum computational complexity.
Resilience of this technique has been tested in presence of
various signal processing attacks. Using proposed technique
robust extraction of watermark is obtained without trading
off the audibility of audio signal. Comparison with plain
SVD-based, DWT-based and DCT-based techniques reflects
that the proposed DSR-based audio watermarking scheme
gives remarkably better performance in terms of correlation
between original and extracted watermarks.

Index Terms— Audio Watermarking, Singular Value De-
composition, Dynamic Stochastic Resonance, Noise

1. INTRODUCTION

Traditionally considered a nuisance, noise has been recently
found to be used to improve signal detection performance.
Recent studies have convincingly shown that in non-linear
systems, noise can induce more ordered regime that cause am-
plification of weak signals and increase the signal-to-noise ra-
tio. This can be explained using a concept of physics stochas-
tic resonance [1], [2], [3]. Due to widespread use of audio
signals on the Internet, there a potential danger of copyright
violation and Intellectual Property theft. Digital watermark-
ing has been proposed in recent years as means of protecting
multimedia contents from intellectual piracy. Digital audio
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watermarking is process of embedding watermarks into au-
dio signal to show authenticity and ownership. Audio water-
marking should meet the following requirements (a) Imper-
ceptibility: the digital watermark should not affect the quality
of original audio signal after it is watermarked; (b) Robust-
ness: the embedded watermark data should not be removed or
eliminated by unauthorized distributors using common signal
processing operations and attacks. A significant number of
watermarking techniques have been reported in recent years
in order to create robust and imperceptible audio watermarks.
Sun et al. [4] have used SR phenomenon in context of au-
dio watermarking. A DCT-based audio watermarking method
given for copyright protection of audio data by embedding
watermark in high energy segments has been proposed by
Dhar et al. [5]. An SVD-based watermarking technique has
been described by [6] where the SVD of the spectrogram is
modified adaptively according to the information to be water-
marked. Another SVD-DWT-based watermarking technique
was proposed by [7] where the effectiveness of algorithm has
been brought by virtue of applying a cascade of two power-
ful mathematical transforms; the discrete wavelets transform
(DWT) and the singular value decomposition (SVD). Most
of the existing watermark technique suggests that good ro-
bustness can be achieved only at the cost of audible quality
of signal. However, in this paper, a novel DSR-based tech-
nique using SVD has been proposed for robust extraction of
watermark without any loss of audible quality of actual sig-
nal. DSR has been earlier used in SVD domain for improving
robustness of logo extraction from images by [8]. In this pa-
per, an analogy to Benzi’s [2] double well model for global
climate in the context of audio watermarking has been pre-
sented. Each of the two minima is represented by a noisy
state and enhanced state of the watermarked signal respec-
tively. The state at which signal hops into tuned state is when
the correlation coefficient between original and extracted wa-
termark is found to be maximum. In this way watermark can
be extracted with good robustness. In this proposed method
DSR is applied on coefficient of distorted watermarked au-
dio signal. Our approach utilizes the noise introduced during
attacks in DSR. To gauge the performance of the watermark



embedding by measuring imperceptibility of the watermark,
metrics Signal-to-noise ratio (SN R) has been calculated. Its
value should be greater than 13 dB for good audibility. An-
other objective measure, Mean Opinion Score (MOS) which
is the average score (between 1 and 5) of audio quality of a
signal given by 5 different listeners. To measure the similarity
between original and extracted watermark, Correlation coef-
ficient, p has been computed. The correlation factor p may
take values between 0O (random relationship) to 1 (perfect lin-
ear relationship).

2. DYNAMIC STOCHASTIC RESONANCE

In order to exhibit SR, a system should possess three ba-
sic properties: a non-linearity in terms of threshold, a sub-
threshold signal like a signal with small amplitude, and a
source of additive noise. This phenomenon occurs frequently
in bistable systems or in systems with threshold-like behavior.
The general behavior of SR mechanism shows that at lower
noise intensities the weak signal is unable to cross the thresh-
old, thus giving a very low SNR. For large noise intensities the
output is dominated by the noise, also leading to a low SNR.
But, for moderate noise intensities, the noise allows the sig-
nal to cross the threshold giving maximum SNR at some op-
timum noise level. Thus, a plot of SNR as a function of noise
intensity shows a peak at an optimum noise level as shown
in Fig. 1(a). A classic one-dimensional non-linear dynamic

SNR vs Noise Densily Curve

Noise deviation, O

(a) Signal-to-noise ratio vs.
noise density

(b) Bistable double well po-
tential system

Fig. 1. SR in double well potential

system that exhibits stochastic resonance is modeled with the

help of Langevin equation of motion [9]. Addition of a peri-

odic input signal [B sin(wt)] to the bistable system makes it

time-dependent whose dynamics are governed by Eq. 1.
dx(t) dU (x)

== + Bsin(wt) + VDE(t) (1

where U (z) is a bistable quartic potential (Fig. 1(b)) given in
Eq. 2.
x? 2t
Ulx) = —a— +b— 2
(x) a + 1 (2)

Here, a and b are positive bistable double-well parameters.
The double-well system is stable at x,, = :I:\/% separated
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by a barrier of height AU = Z—Z when the £(t) is zero. Here
B and w are the amplitude and frequency of the periodic sig-
nal respectively and there an additive stochastic fluctualtion
(noise) £(t) with intensity D. It is assumed that the signal
amplitude is small enough so that in the absence of noise it is
insufficient to force a particle to move from one well to an-
other. It is assumed that the signal amplitude is small enough
so that in the absence of noise it is insufficient to force a
particle of unit mass to move from one well to another. It,
therefore, fluctuates around its local stable states. When a
weak periodic force and noise are applied to the unit mass
particle in the potential well, noise-driven switching between
the potential wells takes place only at some ‘resonant’ values
of noise. This noise-induced hopping is synchronized with
the average waiting time, between two noise-driven inter-well
transitions that satisfies the time-scale matching between sig-
nal frequency and the residence times of the particle in each
well. Maximum SN R is achieved when a = 20?2 by differ-
entiation of SV R expression [8]. Thus SN R has maximum
value at an intrinsic parameter, a, of the dynamic double well
system. The other parameter b can be obtained using parame-
ter a. For weak input signal, condition b < 4‘;—;’ is required to
ensure subthreshold condition [8]. Solving the stochastic dif-
ferential equation given in Eq. 1 using the stochastic version
of Euler-Maruyama’s iterative discretized method as follows
[10].

z(n+1) = 2(n) + At[az(n) — bz (n) + Input]  (3)

where Input = Bsin(w(t) + D&(t) denotes the sequence of
input signal and noise. In this paper, Input can be replaced
by audio signal as they are considered to contain information
both related to signal as well as noise due to attacks [8]. Here
At is the sampling time, taken as 0.015 experimentally. In
case

3. WATERMARK EMBEDDING

The cover signal is an audio signal while the watermark is
an image, the reason behind taking logo image (2-D signal)
as a watermark is to measure robustness by visualizing visual
extracted logo. The following steps have been followed for
embedding the watermark into the audio signal [6].

Let X = {z(i),1 <14 < L} represent a host audio signal of

length L = p2. W =w(i,j),suchthat 1 <i<p,1<j<p
is a binary logo of size p X p, to be embedded in host audio
signal. Let A = (A;;),,,,, be a matrix representation of host
audio signal, we represent signal as a matrix mathematical
simplicity. X, with SVD of the foorm A = U DVT, where
U and V are orthogonal matrices. The columns of U are
called left singular vectors while those of V' are right singu-
lar vectors. D is diagonal matrix with nonnegative elements,
called the singular values. Let u < p be the rank of matrix A.



The nonzero elements A1, A2, A3, - - - , A, of D are the singu-
lar values of matrix A. The SVD of the reshaped cover signal
matrix provides a medium to embed a 2D watermark pattern
directly. In order to ensure the inaudibility (to guarantee that
the modifications are below the HAS hearing level) the em-
bedding watermark message is shaped with singular values of
original/host audio signal, thus the embedding watermark is
modified adaptively with embedded coefficients.
Step 1: The audio signal X of length p? is converted into a
matrix A = (4;x;),,,,» having p x p elements.

Step 2: Apply singular value decomposition on host audio

signal matrix A producing three matrices as U, D, V. The wa-
termark W = w(i, j), p X p is added to the diagonal matrix
D with scaling factor « as follows.

wq(i, ) = N + adjw(i, §) %)

where « is the watermark amplification factor, taken as 0.02
and wy is the modified watermark. SVD of this modified wa-
termark is performed as Wy = U,, D,, Vf .

Step 3:The singular matrix of this decomposition, D,, is

used with singular vectors of cover signal to reconstruct the
watermarked audio signal as A,, = UD,, VT. SNR of this
watermarked audio signal with respect to the original cover
audio signal is computed to assess the audible quality. Per-
ceptual audio quality measure is also computed using mean
opinion scores given by 5 listeners.

4. PROPOSED DYNAMIC STOCHASTIC
RESONANCE-BASED WATERMARK EXTRACTION

The watermarked audio signal may be subjected to intentional
or unintentional attacks during transmission over a channel.
We used U, Vi, and D as a key during extraction process.
We transmitted these key matrics through secured channel to
receiver. The proposed DSR-based extraction process follows
the steps as given under:

Step 1: Apply DSR on the possibly attacked audio signal, A;U
as follows.

(a) Initialize Ag,(0)=0, a = 2002, b = 0.005 x 4a®/27.
Value of bistable system « is initialized following the condi-
tion of maximizing SN R for a DSR system, where o is stan-
dard deviation of noise approximated as standard deviation of
attacked, watermarked audio signal. while m is a number less
than 1 to ensure sub threshold condition of signal.

(b) Using iterative equation given in Eq. 5, compute tuned au-
dio signal matrix. Here Ags-(n + 1) is the DSR enhanced
(tuned) audio signal, n is the iteration number; a, b and At
are the bistable system parameters.

Agsr(n+1) = Aggr(n) + AtlaAge (n) — bAge(n) + A,

&)
Step 3: Perform SVD on DSR-tuned audio signal Ay, ((n +
1) to obtain U , D,, and V.. Using this D,, and singular vec-
tors U,, and V,, obtained in Step 2 of embedding process, find
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the tuned modified matrix W, = U,, D, V.I'.
Step 4: Extract the watermark bits from this matrix using

Step 5: Calculate cross-correlation coefficient p(n + 1) be-
tween extracted watermark and original watermark after each
iteration. To make the algorithm adaptive, repeat Step 2 to
Step 5 for increasing number of iteration n and get the value
n for which p(n) becomes maximum.

5. SIMULATION RESULTS AND OBSERVATIONS

Three cover audio signals (Speech, Classical music and In-
strumental music) that have been tested for this technique are
shown in Fig. 2(a), Fig. 2(b) and Fig. 2(c) respectively. Water-
marked signal for these cover audio signals have been shown
in Fig. 2(e), Fig. 2(f) and Fig. 2(e) respectively. Fig. 2(d)
shows the original binary watermark and Fig. 2(h) shows ex-
tracted watermark in the absence of any attacks from Speech
signal. Assumed parameters m=0.005 and A¢=0.5.

©

(a) Speech (b) Classi- (c) Instru- (d)
cal music mental Orig-
music inal
(e) (f) Classi- (g) Instru- (h)
Speech, cal Music, mental Ex-
SN R=24.69 SN R=33.61 Music, tracted
SN R=30.82

Fig. 2. Top fig is original cover audio signal and below is
watermarked signal

5.1. Quality of Watermarked Audio Signal

Inserting watermark in audio signal introduce a small amount
of distortion (noise) in audio signal. Quality of host signal
after adding watermark is calculated using parameter known
as SN R as discussed in Section 1. SN R values for differ-
ent values of =0.03 (as shown in Fig. 2 suggest that the au-
dibility of the watermarked audio signals is not impaired by
the watermark embedding process. The M O.S values for all



watermarked signals are, Classical - 3, Speech - 4 and Instru-
mental - 4, indicating that good imperceptibility is obtained
for both the cover signals.

5.2. Quality of Extracted Watermarks

With «=0.03, in case of speech signal, correlation of ex-
tracted watermark with original watermark without any attack
is 1.0000, in both technique. When tested for watermarked
audio corrupted by different type of attacks the DSR based
technique reaches very high correlation as shown in Fig. 3.
The plain frequency-based techniques are dependent on value
of a for robustness. Response under various signal processing
attacks such as adding dynamic noise (add — dyn — noise),
amplification (AM P), zero crossing (ZC'), compression
(Compress), gaussian noise (Gaussian), extrastereo, in-
vert, voice removal, smoothing (Smoothl and Smooth2)
and echo (Echo) [11] for the three cover audio signals have
been tested and tabulated in Table 1. Correlation coefficient
values obtained for three cover audio signals in compar-
ison with existing frequency domain audio watermarking
techniques [6], [12], [5] have been tabulated in Table 2. It
is therefore observed that for good audio quality of water-
marked audio signal, remarkably better quality of extracted
watermark is obtained using proposed DSR-based technique
than that obtained using plain SVD, DCT or DWT water-
marking. Graph showing correlation coefficient, p(n) with
respect to iteration (n) has been shown in Fig. 4. At an aver-
age for amplification attack, the peak correlation coefficient
is obtained at n=3 iterations.

() (b) (© (C)

Noise AWGN Zero Amp.
Cross.
r N - ~ s ™
8] iU O £t |
[ A [ “ LY Il
©) ® () (h)
Cut Echo Smoothl Smooth2
sam-
ple

Fig. 3. Extracted watermarks for various attacks by proposed
SVD and DSR-based technique
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Fig. 4. Number of iteration (n) vs. correlation coefficient (p)
for amplification attack

5.3. Discussion

The basic mechanism of DSR for improvement of robustness
is attributed to the way DSR modify the distribution of the
attacked audio signal values. It is observed that attack (echo)
shrinks the distribution of audio signal values making accu-
rate extraction of logo difficult (Fig. 5). However, after DSR
iteration n = 6, the distribution is flattened increasing overall
energy of the audio signal. This increases the energy of hid-
den data also, making accurate extraction of watermark easier.

E I R e B T N

(b) Echo attack

(a) Water-
marked speech

(c) DSR itera-
tion n=6

Fig. 5. Distribution of SVD coefficients of audio signal

6. CONCLUSION

An adaptive DSR-based algorithm for watermark extraction
using SVD has been proposed and analyzed in this paper.
The most striking feature of the proposed technique is the
remarkable improvement in robustness of watermark extrac-
tion. Thus, authenticity is increased without compromising
with audibility of audio signal. Improvement in robustness
is achieved due to rearrangement of distribution of distorted
signal coefficients and transferring them from a weak state
to a strong state by an iterative DSR procedure. The noise
introduced during attack itself is utilized in DSR iteration to
suppress the effect of noise in watermark extraction. An adap-
tive algorithm is used to ensure minimum computational com-
plexity. Robustness has been evaluated against different sig-
nal processing attacks and results suggest that our proposed
technique gives better robustness than the plain SVD, DCT
and DWT-based techniques.



Table 1. Correlation coefficient values obtained from the proposed DSR-based technique for three cover audio signals- speech,
classical music and instrumental music for various attacks

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Speech Classical Instrumental

Attacks SVD-DSR | SVD | SVD-DSR | SVD | SVD-DSR | SVD
AMP 0.9977 [0.9620 [ 0.9977 [0.9620 [ 0.9977 [ 0.9620
ZC 0.9937 [0.8326 [ 0.9262 [ 0.1483 | 0.9835 | 0.9630
Gaussian 0.9828 | 09784 [ 0.9975 [0.9839 | 0.9998 | 0.9995
Echo 0.8235 | 0278 [ 0.8391 [0.2259 | 0.4260 | 0.9371
Extrastereo 0.9228 | 09174 [ 0.9188 [ 09174 | 09188 | 09174
Invert 1.0000 | 1.0000 | 1.0000 [ 1.0000 [ 1.0000 [ 1.0000
Smoothl 0.9667 | 0.8527 [ 0.9955 [0.9955 | 0.9940 | 0.9926
Stat1 0.9547 [ 0.8181 [ 0.9821 [0.9598 | 0.9856 | 0.9573
Voice removal | 1.0000 | 1.0000 | 1.0000 | 1.0000 [ 1.0000 [ 1.0000
Add-dyn-noise | 0.8613 [ 0.5216 [ 0.9288 | 0.8562 | 0.9295 | 0.7747
Cutsample 0.8124 [ 04731 [ 0.8645 [0.5794 | 0.8942 | 0.5120
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Table 2. Correlation coefficient values obtained from the pro-
posed DSR-based technique for Speech Signal in comparison
with plain SVD-based [6], plain DWT-based [12] and plain

DCT-based [5] techniques for various attacks
Attacks SVD-DSR | SVD DWT DCT
AMP 0.9977 0.9620 | 0.9467 0.9353
ZC 0.9937 0.8326 | 0.9141 0.9042
Gaussian 0.9828 0.9784 | 0.9808 0.9672
Echo 0.8235 0.0278 | 0.7434 0.7202
Extrastereo 0.9228 09174 | 0.5762 0.4932
Invert 1.0000 1.0000 | -0.0625 | -0.0203
Smoothl 0.9667 0.8527 | 0.9610 | 0.0.9135
Statl 0.9547 0.8181 | 0.9857 0.9262
Voice removal 1.0000 1.0000 | 1.0000 1.0000
Add-dyn-noise 0.8613 0.5216 | 0.6250 0.5736
Cutsample 0.8012 0.4731 | 0.7527 0.7322
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