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ABSTRACT

We consider the problem of separating the tonal and the tran-
sient components of an audio signal. We employ mixed norms
with different groups on the analysis coefficients to formulate
the problem. We provide an algorithm for the solution of the
problem and demonstrate that the formulation can be effec-
tive for the given task. We also provide a brief discussion on
the difference with a synthesis prior based formulation.

Index Terms— Structured sparsity, analysis prior, mixed
norms , morphological component analysis.

1. INTRODUCTION

We consider the problem of decomposition of an audio sig-
nal into tonal and transient parts. Tonal part consists of os-
cillatory components. In contrast, transient part includes im-
pulsive components (like percussion). The proposed model
assumes that considered signal is sum of tonal and transient
parts.

Our approach is to model tonal and transient parts sepa-
rately and to use these models to formulate the decomposition
task as a minimization problem. We model the components
in two stages. Firstly, we choose suitable Short-Time Fourier
Transforms (STFT) to represent each component. Secondly,
we use ‘mixed norms with different groupings’ on these STFT
coefficients.

In the last decade, the problem of decomposition of sig-
nals into tonal and transient parts is studied in the context
of regularized inverse problems. One of the well-known ap-
proaches to the signal decomposition problem is called Mor-
phological Component Analysis (MCA) [1]. This decompo-
sition method aims to separate two components of an image
(also can be applied to audio) which can be sparsified by
different dictionaries. In the MCA framework, the problem
is formulated as a multilayer ¢; regularized inverse problem
which is based on the analysis or synthesis approach. How-
ever, from a Bayesian perspective, the usage of /; norm as a
signal coefficient prior puts into model an independence as-
sumption between coefficients. ¢;-regularization results in
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‘sparse’ solutions but in an unstructured way. For audio sig-
nals, which are highly structured, ¢; regularized inverse prob-
lem formulations are not suitable. To obtain special structures
such as tonal or transient part, which are sparse in frequency
and time respectively, more structured estimation methods
should be used. To overcome this problem, methods based
on mixed norms as signal priors [2], [3], [4], [5] are studied
in recent years. Multilayer decomposition methods based on
mixed norm regularization are applied for audio processing
[6]. In these works, formulations are based on the synthesis
prior. In contrast, our formulation is based on analysis prior.
(see [7] and [8] for differences and theoretical discussion).

Outline

In Section 2, we provide our problem formulation and dis-
cuss time-frequency distributions with their relations to mixed
norms in detail. Then, in Section 3, we provide an algorithm
to solve our problem. In Section 4, we briefly discuss the
synthesis based decomposition formulation. In Section 5, we
present our results and discuss the differences between anal-
ysis based approach and synthesis based approach. Section 6
is the conclusion.

2. PROBLEM FORMULATION

Given a mixture signal y = x; + X9, where x; and x5 are
tonal and transient parts respectively, we formulate our prob-
lem as,

1
(x7,x5) = argmin 3 ly —x1 =03+ A1 [|x1 [[a+ Az [|x2]]5-

X1,X2
(1)
where A1 and Ay are parameters of the model. In this
formulation, we define norms, ||.||, and ||.||» such that,

(i) |||« assumes low values for the tonal content,

(ii) ||.||» assumes low values for the transient content.

We define ||.||, and ||.||s in two steps. First, we use two
STFTs with different time-frequency resolutions. Second, we
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Fig. 1: (a) The mixture signal. This signal is sum of a oscillatory part that
modeling the tonal part and clicks that modeling the transient part. In (b),
STFT coefficients of the mixture signal with a long analysis window can be
seen. In this panel, horizontal content is strong and sharper. In (c), STFT
coefficients of the mixture signal with a short analysis window can be seen.
In this panel, vertical content is strong and sharper.

define mixed norms to penalize particular structures in these
two parametrized STFTs.

2.1. Parameters of the STFT

We employ STFTs with different time-frequency resolutions
to analyze each component. The selection of the parameters
is based on the observation that, in a time-frequency map,
tonal components produce horizontal lines and transient com-
ponents produce vertical lines. In order to further emphasize
this difference, we employ an STFT with a high frequency
resolution for the tonal component and an STFT with a high
time-resolution for the transient component.

To gain intuition, consider the signal in Fig. 1(a). This
signal consists of an oscillatory part and three clicks. We
parametrize two STFTs to better represent each component.
Fig. 1(b) shows the spectrogram of the signal when a long
analysis window is used. We observe that, the horizontal
lines are sharp wheras the vertical lines are rather diffuse.
Similarly, an STFT with a short analysis window has a bet-
ter time-resolution and is more suitable for representing the
clicks. Fig. 1(c) shows the spectrogram of the signal when
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Fig. 2: Groups and overlaps in TF Plane. In this Figure, group size is 3 and
groups are maximally overlapping.
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Fig. 3: Spectrogram of the mixture signal used in experiment with long anal-
ysis window.

a short analysis window is used. In this representation, the
vertical content is sharper than the horizontal content.

2.2. Mixed Norms with Different Groups

We use ‘mixed norms with different groups’ for each compo-
nent. In order to clarify this, suppose that Fig. 2 depicts the
STFT coefficients, where the coefficients are denoted by w; ;
and the groups formed along time and frequency axes are de-
noted by gr(; x) and gr(; ) respectively. Here, we think of
g7(:,1 as the collection (w; 1, w; 2, w1 3) so that ||gpe 1|2 =
VIwii]? + [wi2l? + Jw; 3. In this setting, the norm de-
fined by

w| = Z llgraille 2)
0]

assumes small values if the coefficients are clustered in hor-
izontal groups — we refer to [3]. Similarly, if the norm is
defined based on groups along the frequency axis (i.e. gr)
the norm will assume small values when the coefficients are
clustered in vertical groups.
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2.3. Mixed Norms of STFT Coefficients

In (1), we use the mixed norm of whole time-frequency rep-
resentations with different groupings. This setting penalizes
particular structures and leads to ’structured’ solutions in the
sense of time-frequency distributions. For the tonal part, we
obtain a structured solution which has sharp horizontal struc-
tures without any vertical structure. Similarly, for the tran-
sient part, we obtain a structured solution which has sharp
vertical structures without any horizontal structure.

In order to obtain the tonal part, we choose |.||, =
|A1x1||2,1 where ||.]|2,1 is @ mixed norm with groups formed
along the time axis. Aj is a transform with long analysis
window. To obtain the transient part, we choose |.|[, =
|A2x2||2,1 where ||.||2,1 is a mixed norm with groups formed
along the frequency axis. As is a transform with short analy-
sis window. We discussed the properties of STFTs with long
and short analysis windows in Section 2.1.

3. MINIMIZATION ALGORITHM

Recall that, our goal is to minimize,

1
T, %) = 5 [ly =31 = %25+ At [xalla+ As [Ix2 ]l 3)

A coordinate-descent type algorithm [9] can be used for
minimization. At each step, a typical coordinate-descent type
algorithm fixes some variables. This means, by fixing some
variables for each iteration, algorithm solves a particular op-
timization problem with respect to one variable. The method
is summarized in Algorithm 1.

Algorithm 1 Algorithm for minimizing (3).
1: repeat
2:  xp = argmin, J(u,Xz)
3: xo = argmin, J(X1,u)
4: until Convergence

{P1}
{P2}

In every iteration, P1 and P2 appear as new minimization
problems. These problems can be regarded as mixed-norm
denoising problems,

x* = argmin o [ly — x[3 + A Ax[2,1 )

If we look our cost function, which is defined by (3), by
assuming one component as constant, one can see that new
minimization problem is equivalent to (4). When A is the
analysis operator of the frame, this problem has a different
minimization procedure than iterative/shrinkage thresholding
algorithms. This problem is studied in [10] and algorithms
for minimization are provided.
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Fig. 4: Spectrogram of the mixture signal used in experiment with short anal-
ysis window.

4. DECOMPOSITION VIA SYNTHESIS PRIOR

In the next section, we will present decomposition results for
synthesis prior based algorithm for comparison to analysis
prior case. Let us now write the problem formulation for the
synthesis approach.

With the synthesis prior, the decomposition problem can
be formulated as,

wi, wj = argmin [[y—S1w1—Sawa |3+ A1 [|wi [la+ A2 [[walls

Wi,W2
)
This problem formulation is different from the analysis prior
formulation and has been discussed in [2].

5. RESULTS AND COMPARISON

We present the decomposition of an audio signal which con-
sists of tonal and transient parts. Audio signal is the sum of
reed flute and darbuka (a kind of percussion). We try to model
reed flute as tonal part and darbuka as transient part. We
give the results obtained by both analysis and synthesis ap-
proaches for comparison.! We omit the mathematical details
of the differences between analysis and synthesis approaches
when frames are used (see [7] and [8]).

5.1. Experimental Setting

In previous sections, we proposed the decomposition algo-
rithm via analysis prior based formulation. We compare this
approach with synthesis approach. Before discussing results,
we have to determine our parameters. We use same parame-
ters for two approaches to see the similarities or differences.

We will discuss how to choose regularizer weights (\;’s),
window sizes, group sizes, group shapes.

We choose regularizer weights ad hoc. From an intuitive
point of view, regularizer weights adjust the suppression of
particular components. However, it is not possible to easily

IThe results for synthesis formulation are obtained by our implementa-
tion.
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Spectrogram of Tonal Estimate obtained by Analysis Prior.
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Fig. 5: (a) Spectrogram of the tonal estimate via analysis prior. The spec-
trogram mainly contains horizontal structure that represents tonal part. (b)
Spectrogram of the transient estimate via analysis prior. The spectrogram
mainly contains vertical structure that represents transient part.

adjust which component is suppressed because of the inter-
action between components through coordinate-descent algo-
rithm. For regularizer weights, we choose A\; = 0.6 and
Ao = 0.3. In several signals, regularizer weights should be se-
lected properly to obtain perceptually meaningful estimates.
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Spectrogram of Tonal Estimate obtained by Synthesis Prior.

Spectrogram of Transient Estimate obtained by Synthesis Prior.
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Fig. 6: (a) Spectrogram of the tonal estimate via synthesis prior. The spec-
trogram mainly contains horizontal structure that represents tonal part. (b)
Spectrogram of the transient estimate via synthesis prior. The spectrogram
mainly contains vertical structure that represents transient part.
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We presented the results for analysis prior based decompo-
sition method and compared it with the synthesis based ap-

proach.

It is also important to choose proper STFT frames to rep-
resent audio signals. As we discussed before, we use long
windows to represent tonal part and short windows to repre-
sent transient part. We used a smooth window of length 2048
(the window is selected so as make the STFT a tight frame)
and a Hop size of 1024 samples. For the transient component,
we use a similar smooth window of length 512 and a Hop size

of 128 samples.

Group sizes and shapes are also important for us. In our
experiment, we model the tonal part with groups formed by
taking 15 neighboring coefficients in the same subband with
maximal overlap. For modeling transient part, we use a rect-
angular group shape with width 2 and size 15 with maximal
overlap. We note that an interesting approach can be found
in [6] which proposes to weight these groups with triangular

windows.

The obtained spectrograms via analysis and synthesis ap-
proaches can be seen in Fig. 5 and Fig. 6 respectively. Also,
SNR values of these estimates are tabulated in Table 1.

Table 1
SNR Values | Analysis | Synthesis
Tonal 15.58dB | 15.16dB
Transient 5.05dB | 4.68 dB

Analysis prior based estimation results in ‘smoother’
spectrograms and have more non-zero coefficients than syn-
thesis prior based estimations. This leads to a little difference
in terms of perceptual quality. Analysis prior based estimates
seem to be less contaminated by musical noise compared to
the synthesis prior estimates.

Experiments presented in this paper can be listened from
http://web.itu.edu.tr/akyildizom/Thesis
/decompositionl.
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