
EFFICIENT STEREO MATCHING BASED ON A NEW CONFIDENCE METRIC 

 

Won-Hee Lee, Yumi Kim, and Jong Beom Ra 

 

Department of Electrical Engineering, KAIST, Daejeon, Korea 
 

 

ABSTRACT 

 

In this paper, we propose a new confidence metric for 

efficient stereo matching. To measure the confidence of a 

stereo match, we refer to the curvatures around the two 

minimum costs of a cost curve, the size of aggregation 

kernel, and the occlusion information. Using the proposed 

confidence metric, we then design a weighted median filter, 

in order to refine the initially estimated disparities with a 

small aggregation kernel. In the design of weighted median 

filter, we overcome the performance degradation due to a 

small kernel size by utilizing the filter information of 

previously processed pixels. It is found that the performance 

of the proposed stereo matching algorithm is competitive to 

the other existing local algorithms even with a small size of 

aggregation kernel. 

 

Index Terms—stereo matching, confidence metric, 

aggregation kernel size 

 

1. INTRODUCTION 

 

With the recent popularity of 3D display, various 3D 

displays without glasses have been developed [1]. Among 

those displays, a display that uses arrays of vertically 

oriented cylindrical lenslets shows a remarkably good actual 

appearance compared to the others. This lenslet-based 

display needs a series of multiple views to generate the 3D 

effect. Those multiple view images can be generated by 

using pixel disparities, which are obtained from two stereo 

images transmitted to the display. To obtain the disparities, 

stereo matching between the stereo images is necessary. For 

the TV application, however, the stereo matching should be 

performed in real-time. Therefore, the algorithm may need 

to be implemented in VLSI with consideration of low 

computational cost. 

Several stereo matching algorithms had been 

implemented in VLSI [2, 3]. However, those algorithms 

may be improved for more efficient VLSI implementation. 

To design a stereo matching algorithm with low 

computational complexity, the aggregation kernel size is to 

be small because the aggregation process takes a large 

portion of computation load. However, a small size of 

aggregation kernel may cause a problem especially in a 

textureless area where little information for matching exists 

inside the aggregation kernel. 

To examine the stereo matching performance according 

to the aggregation kernel size, a stereo matching algorithm 

[4] is performed by using two different sizes of aggregation 

kernel, 35 x 35 and 5 x 35, respectively, and the 

corresponding disparity maps are given in Fig. 1. As 

expected, the disparity map obtained with a smaller 

aggregation kernel includes much larger erroneous areas 

especially in the textureless area (see Fig. 1(d)). However, 

the increase is usually negligible in the texture area. 

Therefore, the disparities in the texture area are more 

reliable for refining incorrect disparities in the neighboring 

textureless area. Hence, for efficient refinement of the 

disparity map obtained with a small size kernel, we propose 

a new confidence metric. Our stereo matching algorithm 

based on the proposed metric is fully local and progressive 

so as to satisfy a VLSI framework. 

The paper is organized as follows. In section 2, we 

briefly describe a stereo matching algorithm that we adopt 

for initial disparity estimation. We also review various 

confidence metrics. The proposed confidence metric and the 

corresponding stereo matching algorithm are described in 

section 3. Section 4 shows some experimental results. 

Finally, we conclude the paper in section 5.  

 

2. RELATED WORK 

 

2.1. Cross-based stereo matching algorithm 

 

To estimate an initial disparity map, we adopt a local stereo 

matching algorithm, which is called the cross-based stereo 

matching algorithm [4]. In the algorithm, the raw matching 

cost is first computed for every pair of corresponding pixels. 

Namely, 
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where I
L
 and I

R
 represent the left and right images, x and d 

denote the spatial coordinate and the disparity, respectively, 

and T denotes a truncation limit of matching cost. By using 

the obtained raw matching cost, the aggregated cost is 

computed as 
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Figure 1. Disparity maps obtained by using aggregation 

kernels of different sizes. (a) Left image of the Venus set, 

(b), (c) disparity map and the corresponding bad pixel map 

(error > 1) obtained by using a kernel of 35 x 35, and (d), (e) 

disparity map and its bad pixel map (error > 1) by using a 

kernel of 5 x 35. 

 

where Ud(x) is a local support region [4], and ||Ud(x)|| 

denotes  the number of support pixels  in Ud(x).   Finally, the 

disparity is selected according to the Winner-Takes-All 

strategy, as follows.  
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where d
0
(x) denotes the initial disparity, and dmax denotes the 

maximum disparity. 

 

2.2. Confidence metrics 
 

Due to the inherent ambiguity of stereo matches, several 

metrics were proposed to measure the confidence level of 

match [5]. Those confidence metrics utilize an aggregated 

cost, curvature of the cost curve, and left-right consistency. 

The followings are some examples of existing metrics. 

 

2.2.1. Matching score metric (MSM) 

This metric uses the aggregated cost defined in Eq. (2) as a 

confidence measure, namely, 
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Here, di denotes the disparity that reveals the i
th

 minimum 

cost. Intuitively, a lower cost implies a more correct match. 

 

2.2.2. Curvature of cost curve metric (CUR) 

The curvature of cost curve around the minimum cost 

indicates the confidence of a match, because the cost 

increases rapidly near the disparity having the minimum 

cost. Accordingly, CUR is defined as  
 

 
 

 

 
 

 
 

 

 

  

Figure 2. Overall diagram of the proposed algorithm. 
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2.2.3. Naive peak ratio metric (PKRN) 

A distinctive minimum cost in the cost curve can be 

considered an evidence of confident match. Accordingly, 

PKRN is defined as a ratio of the two minimum costs, i.e., 
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2.2.4. Naive winner margin metric (WMNN) 

Similar to PKRN, WMNN utilizes the distinctiveness of the 

minimum cost. Instead of using a ratio, WMNN computes a 

margin between two minimum costs and normalize it with 

the sum of total costs. 
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2.2.5. Left right difference metric (LRD) 

Consistency between left and right disparity maps can be 

used to check if a match is confident. LRD is defined by 

using a margin between two minimum costs and the 

consistency of the minimum cost across the left and right 

disparity maps, i.e., 
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Here, min{cR(x - d1, dR)} implies the minimum value of a 

cost curve at the corresponding pixel in the right image. 

 

3. THE PROPOSED ALGORITHM 
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Figure 3. (a), (b), (c) Cost graphs of correctly estimated dot 

pixels; (d), (e), (f) cost graphs of incorrectly estimated cross 

pixels. 

 

The overall diagram of the proposed algorithm is described 

in Fig. 2. In the algorithm, we first estimate an initial 

disparity map by using the cross-based stereo matching 

algorithm with a limited size of aggregation kernel. We then 

examine the confidence of initial disparity at each pixel by 

using the proposed confidence metric. Here, the metric is 

calculated by using the cost graph obtained during the initial 

disparity estimation process. To refine the disparities of low 

confidence, we determine neighboring pixels that belong to 

the same object, because they tend to have correct 

disparities. To determine those neighboring pixels, we 

perform the color segmentation by adopting a simple and 

efficient histogram-based algorithm [6], and assign the 

corresponding color segment index, CS, to each pixel. We 

then perform the refinement by using the initial disparity, 

confidence measure, and color segment index. 

 

3.1. Proposed confidence metric 

 

Since the limitation on the aggregation kernel size produces 

a considerable amount of bad pixels, it is important to 

discriminate them from the correctly estimated ones. To 

design a new confidence metric under various conditions, 

we examine many different types of cost graphs. Figs. 3(a), 

(b), and (c) show the cost graphs for three correctly 

estimated pixels, while Figs. 3(d), (e), and (f) show the 

graphs for the other three incorrectly estimated pixels. Since 

the correctly estimated pixels in Figs. 3(a) and (b) 

commonly provide a large curvature around the minimum 

cost, CUR can provide a large confidence value. However, 

CUR cannot provide a large confidence value for a small 

curvature in Fig. 3(c), since it is calculated by using only 

three cost values. Therefore, a new confidence metric is 

needed so that a cost graph with a small curvature in Fig. 

3(c) can also provide a high confidence value. The metric 

should also discriminate from flat cost graphs shown in Figs. 

3(e) and (f).  

In addition, a new metric needs to provide a low 

confidence value for a periodic pattern. However, since the 

periodic pattern can have a large curvature around the 

minimum cost as shown in Fig. 3(d), its confidence value 

may become large. To alleviate this problem, a new metric 

may need to be designed using two minimum cost values as 

in PKRN and WMNN metrics. It is observed that a periodic 

pattern has high curvatures around at least two minimum 

costs. This observation may be utilized for designing a new 

confidence metric so that it can successfully handle periodic 

patterns. 

Accordingly, a new metric is proposed as 
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where LoG represents a Laplacian of Gaussian filter of n-

taps. Note that Cprop includes an occlusion check as in LRD 

so that it becomes zero if a pixel is found to be occluded 

through a cross-check between left and right disparity maps.  

The LoG filter in Eq. (9) extracts the curvature 

information across a range larger than that including three 

cost values in the CUR metric. This filter characteristic 

improves the performance of the confidence metric 

especially for a cost graph with a small curvature. 

Introducing a multiplication factor relying on the number of 

support pixels, we also improve the metric performance for 

a cost graph with a small curvature. This is because the 

number of support pixels corresponding to a small curvature 

graph is usually large. In addition, subtracting the curvature 

of the second minimum cost from that of the first minimum 

cost, we can successfully distinguish a periodic pattern from 

a low texture area.  

 

3.2. Refinement 

 

Since the computational cost is our main consideration in 

designing a stereo matching algorithm, local approaches 

such as a weighted median filter [7], a joint bilateral filter 

[8], etc., may be desirable rather than a global one. Among 

them, we adopt a weighted median filter that is performed 

only for the disparities of neighboring pixels that belong to 

the same color segment. 
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where di
0
 represents the initial disparity of neighboring 

pixels whose color segment index is the same as that of the 

center pixel. Meanwhile,  denotes a duplication operator, 

and weight, wi, is defined as a sigmoid function of 

confidence metric, i.e.,  
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Figure 4. (a) Initial disparity map, (b) bad pixel map, and (c) 

proposed confidence map for Teddy; (d) initial disparity 

map, (e) bad pixel map, and (f) proposed confidence map 

for Venus. 

 

Figure 5. Performance of confidence metrics for (a) Venus, 

(b) Tsukuba, (c) Cones, and (d) Teddy. 

 

where  denotes an offset and  determines a slope of the 

sigmoid function.  

Due to the small size of filtering kernel, the filtering is 

applied only to the limited number of pixels. Hence, to 

effectively enlarge a filtering range, we vertically propagate 

the filtered result of a current pixel. The propagated data 

consist of a filtered disparity, weight, and color segment 

index, CS. If the propagated disparity has a larger weight 

than the current filtered disparity, the current weighted 

median filtered disparity is replaced with the propagated 

disparity. Otherwise, all the propagated data are replaced 

with the current ones. 

 
4. EXPERIMENTAL RESULTS 

 

To demonstrate the performance of the proposed algorithm, 

experiments were performed using the benchmark  

Table 1. Error percentages according to adopted confidence 

metrics in the proposed algorithm. Error threshold of 1.0 is 

used. 

Confidence metric Venus Tsukuba Cones Teddy Avg. 

CUR 1.80 2.90 11.6 13.4 7.43 

MSM 8.06 5.52 14.9 20.5 12.2 

PKRN 2.50 2.85 12.7 15.4 8.36 

WMNN 2.90 2.67 13.1 14.4 8.27 

LRD 2.56 2.86 12.0 14.4 7.96 

Proposed 1.83 2.77 11.4 12.6 7.16 

Table 2. Error percentages of stereo matching algorithms for 

several Middlebury stereo sets. Error threshold of 1.0 is 

used. 

Algorithm Venus Tsukuba Cones Teddy Avg. 

[4] 0.96 2.65 12.7 15.1 7.85 

[10] 1.19 1.85 9.79 13.3 6.53 

Proposed 1.83 2.77 11.4 12.6 7.15 

 

Middlebury stereo database [9]. In the experiments, the 

aggregation kernel is limited to 5 x 35 and the filtering 

kernel is set to 5 x 63. Parameters T, n, , and  are set to 60, 

7, 10, and 2, respectively. 

To examine the performance of the proposed 

confidence metric subjectively, we visualize the confidence 

metric with a confidence map in Fig. 4. A confidence map 

may be compared to the corresponding bad pixel map. Since 

the correctly estimated disparity is to be assigned to a high 

value of confidence measure, a confidence map should 

closely correspond to the bad pixel map as shown in Fig. 4. 

To examine the performance of the proposed 

confidence metric objectively, we adopt an objective 

measure, the area under the curve (AUC) [5]. To determine 

the AUC, we order pixels according to their confidence 

measure and produce a curve of error rate as a function of 

the participation of pixels. The area under the curve, or 

AUC, then represents the ability of a confidence metric to 

predict correct matches. A smaller value of AUC implies 

that the confidence metric assigns a larger confidence value 

to a correctly estimated disparity. Fig. 5 shows error rate 

graphs of four test sets, Venus, Tsukuba, Cones, and Teddy, 

for different confidence metrics. It is noted in the graphs 

that the proposed metric provides the smallest AUC for all 

the test sets. 

The effectiveness of a confidence metric can also be 

examined by applying it to the refinement step of the 

proposed stereo matching algorithm. Table 1 shows that the 

proposed confidence metric produces relatively lower error 

rates for all the test sets than the other metrics. 

To examine the performance of the proposed local 

stereo matching algorithm, we compare its matching result 

with those of the other local algorithms reported in the 

Middlebury benchmark [9]. We can note in Table 2 that the 

proposed algorithm provides average error percentages 

similar to those of the others, even with a smaller size of 

aggregation kernel.  
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5. CONCLUSIONS 

 

In this paper, we design an efficient stereo matching 

algorithm with the size limitation on both aggregation and 

filtering kernels. Applying a weighted median filter that is 

based on the proposed confidence metric, we can 

successfully refine initial disparities. To overcome the size 

limitation on aggregation kernel, we effectively utilize 

previously obtained filtering results by propagating them. 

The experimental result shows the performance of the 

proposed algorithm with a small size of aggregation kernel 

is competitive to the existing algorithms with a large size of 

aggregation kernel. 
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Figure 7. Disparity maps obtained by using the algorithms in [4] (1st row) and [9] (2nd row), and by using the proposed 

algorithm, for (a) Tsukuba, (b) Venus, (c) Teddy, and (d) Cones. 
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