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ABSTRACT

In this paper, we propose a novel Hand Posture Recognition
(HPR) for biometrics. This study uses the three dimensional
point clouds for robust hand posture recognition at the rota-
tion and scale. Multi-Hilbert Scanning Distance (MHSD) are
also introduced for mathematical approaches of shape match-
ing. HPR framework is divided into five parts: detecting hand
region, removing the wrist, aligning the hand pose, extracting
feature descriptor, and matching. Based on the experimen-
tal results, this framework showed superior results for hand
posture recognition rate.

Index Terms— Biometrics, Hand Posture Recognition
(HPR), Hilbert Scanning, Multi-Hilbert Scanning Distance
(MHSD)

1. INTRODUCTION

Biometric technologies for automated personal authentication
have been received extensive attention in today’s global in-
formation society, due to increasing security concerns and the
increasing number of applications requiring reliable authenti-
cation of individual. Many physiological and behavioral traits
that are inherent and unique to each individual are considered
for these technologies. Features such as face, fingerprint, iris,
hand geometry, palmprint, gait, voice signature, hand writing,
and gesture, etc., have been suggested for reliable authentica-
tion of individual. Each biometrics has its strengths and limi-
tations according to user acceptance, cost, performance, com-
plexity, the security level, and etc [1]. For example, finger
print and iris verification systems work well for high security
applications, but they are not suitable for medium and low se-
curity applications due to privacy concerns and do not enjoy
users acceptance. On the other hand, face or voice recogni-
tion based authentication systems prove to be cost effective
for simple access control implementations, but it cannot be
used in high security zones. Trade-off between these two
is the hand authentication system that is cost effective and

can be considered the most suitable modality for medium and
low-level security application. They do not cause anxiety for
the user like fingerprint and iris systems and users are easy
to accept due to their convenience. Moreover, they can be
also specified with low resolution images and dirty or greasy
hands don’t hamper the quality of templates [2]. There are
two categories for hand recognition system (HRS) according
to the capture device; contact based and contact free hand
biometric systems. Most of the existing hand involved tech-
niques require pegs or contact-based image acquisition de-
vices. This causes some increasing user acceptance issues
and system reliability issues. In the study, we propose a novel
framework for contact free hand biometrics using Hand Pos-
ture Recognition (HPR). This approach introduces hand pos-
ture recognition using Three Dimensional (3-D) Hand Posture
Point Clouds (HPPC) and Multi Hilbert Scanning Distance
(MHSD) for mathematical approaches of shape matching.

2. EXTRACTING THE HAND POSTURE

2.1. Point Clouds for Hand Posture and Hand Detection

The point clouds are usually used to represent the surface of
object as sets of vertices in a 3D coordinate system. 3D infor-
mation of an object can provide the scale-independent charac-
teristic from motion pictures. A hand posture is a static hand
pose and hand location without any movement involved. To
obtain the hand posture point clouds, the back of one’s hand
is measured by stereo camera. There are two instructions for
hand posture templates using capture device; (1) User takes a
comfortable and specific hand posture, and one finger has to
be stretched at least. (2) One puts the posed hand in the free
space in front of the capture device (stereo camera), and the
back of the posed hand is faced the capture device. In this
study, a template of HPPC is obtained by a combination of
two dimensional (2-D) and three dimensional (3-d) informa-
tion. The point clouds on the captured scene are represented
by the combination of 3D Cartesian coordinate system of a
point, row and column information, and rgb color informa-
tion. A hand posture region in the captured data is extracted
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Fig. 1. Sub skeleton lines using end and bifurcate points.

Fig. 2. Hand skeleton line and computation of an average
angle and distance with sub skeleton lines.

using YCbCr skin color information.

2.2. Eliminating the Wrist in Hand Region

The hand region from section 2.1 includes the wrist region.
To obtain the normalized hand posture, the elimination of
the wrist is required. This section introduces seven steps for
a Wrist Line Extraction (WLE) method for eliminating the
wrist in hand region.

(1) Extracting hand skeleton in binary image: the thin-
ning method is used as the process of skeletonization to get
an image of single pixel width with no discontinuities.

(2) Extracting sub skeleton lines: the sub skeleton lines
are obtained by endpoints and bifurcations in skeleton image.
The crossing number [3] is used for detecting bifurcations and
endpoints in a binary skeletonized image. Figure 1 shows the
endpoints, bifurcation, and the extraction of sub skeleton lines
in skeleton image. A sub skeleton line can write as follows:

Ls
j = pb, p1, p2, p3, · · · , pk, pe, j = 1, · · · , n (1)

where pb is the bifurcation, pe is the endpoint, and p1, · · · , pk
are intermediate points which are on the sub skeleton line be-
tween bifurcation and endpoint. n is the number of sub skele-
ton lines.

(3) Computing a average angle between sub skeletons:
The angle factors between sub skeleton lines are computed to

Table 1. The pseudo-code for the wrist direction decision
if (p == q) then select(p or q)

else γA =
Ās

p

Ās
q

and γD =
D̄s

q

Ās
p

if γA > λ then select(p)
else if γA > γD then select(p)
else select(q)
end if

end if
§ p is the index of max average substraction angle, q is the in-
dex of max distance, Ās

p is the average angle for p-th skeleton
line, Ās

q is the angle for q-th skeleton line, Ds
p is the distance

for p-th skeleton line, Ds
q is the distance for q-th skeleton line,

γA is a angle ratio, γD is a distance ratio, λ is a threshold
value for the sub skeleton line of the wrist.

decide the sub skeleton for the wrist. Each sub skeleton line
has a direction vector d⃗ = −−→pbpe by bifurcation and endpoint.
Angle θsji between the direction vector d⃗j for a sub skeleton
line and the direction vector d⃗i for another sub skeleton lines
is calculated as follows:

θsji = arccos(
d⃗j · d⃗i
|d⃗j ||d⃗i|

) (2)

and average angle between the j-th direction vector and the
other direction vectors is as follows:

Ās
j =

1

n

n∑
i=1

θsji (3)

Ās
M = max(Ās

j), j = 1, · · · , n (4)

where Ās
M is the max angle among Ās

j , j=1,, n, and n is the
number of sub skeleton line.

(4) Computing a distance between each sub skeleton and
hand contour: As the other factor for deciding the sub skele-
ton for the wrist, the distance Ds between sub skeleton line
and hand contour is computed. Ds is computed as the dis-
tance from pk to hand contour point by the normal direction
of −−−→pepm. pm is the middle point between bifurcation and end-
point on sub skeleton line, and m is the half of the number of
intermediate points. hp is the half point between the endpoint
pe and middle point pm on sub skeleton line.

Ds
j = dist(hpj , pcontour) (5)

Ds
M = max(Ds

j ), j = 1, · · · , n (6)

where Ds
M is the max distance among Ds

j , j=1,· · · , n, and n
is the number of sub skeleton line.

(5) Deciding the sub skeleton Ls
w for the wrist direction:

Two factors from step (3) and step (4) are used for determin-
ing the direction of the wrist in hand region. In Table1, the
pseudo code presents for deciding the sub skeleton.
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Fig. 3. A sub region of the back of one’s hand in HPPC and
rotation for alignment of hand posture.

(a) (b)

Fig. 4. Three view binary image projected from HPPC and
polar transformation. The front, top, and left view image.

(6) Extracting the center point on the palm: In hand re-
gion, the center point pc is extracted using the distance map.
The mask operation ⊗ for the distance map dm is just per-
formed in the temporary region in hand region. The tempo-
rary region is as follows:

tr = (
n∪
j

Cpj
b
) ∩Hb (7)

pc = centroid(max(tr ⊗ dm)) (8)

where tr is the temporary region for center point on palm, Cpj
b

is the circle region for the radius l from bifurcation pjb, n is
the number of bifurcation, and Hb is the binary hand region.

(7) Extracting the wrist line: the wrist line is extracted
using the center point pc and the sub skeleton line Ls

w for the
wrist. A circle for radius r from center point pc intersects
with the sub skeleton line for the wrist. The intersection point
is pint. Thus, the wrist line can be extracted by calculation of
the tangent for pint on the circle.

3. FEATURE EXTRACTING AND MATCHING

3.1. Aligning and Projecting the HPPC

The normal vector for a surface of HPPC is computed for
aligning the HPPC. In 3D subspace, the normal vector can
be easily computed if we use the assumption that the z coor-
dinate is functionally dependent on the x and y coordinates.

(a)

(b)

Fig. 5. Four directional Hilbert scans and multi-Hilbert scans.

Given the set of n points S = [x, y, z]T = [x1 · · ·xn, y1 · · ·
yn, z1 · · · zn]T from point clouds, best fitted plane is capable
of being calculated by Least Square Fitting [4]. The nor-
mal vector associated with the surface S = [x, y, z]T is repre-
sented n̂ = [p̂, ŷ, r̂]T . Figure 3 shows the alignment of HPPC
using the normal vector. The aligned hand posture is pro-
jected into three planes (xy, yz, xz-plane). Figure 4 shows
the projected hand posture images on xy, yz, and xz-plane,
respectively. Lastly, The projected images are transformed
into polar coordinates.

3.2. Matching using Multi-Hilbert Scanning Distance

The Hilbert scanning distance [5] was utilized for a accurate
and fast measurement of the similarity between two point
sets on a 2-D image. However, the HSD has some draw-
backs in accurate shape recognition. Thus, multi-Hilbert
scanning distance is introduce to overcome HSD and per-
form accurate shape recognition. There are four types of
Hilbert scans of an image. In this study, α − scanning,
β − scanning, γ − scanning, and δ− scanning are named
according to the scanning direction. Figure 5(a) shows the
four directional Hilbert scans. Figure 5(b) illustrates the re-
trieval region and the Multi-Hilbert Scanning (MHS) of an
image. MHSD consists of five scan types: a single directional
Hilbert scanning and the diagonally shifted scans of the
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four directional Hilbert scans (Right-Down (RD) 1-shifted
α − scanning, Left-Up (LU) 2-shifted β − scanning,
Left-Down (LD) 3-shifted γ − scanning, and Right-Up
(RU) 4-shifted δ − scanning). Given two finite point sets
P = {p0, · · · , pM−1} and R = {r0, · · · , rL−1} where
p (p ∈ P ) and r (r ∈ R) have integer coordinates in an
image, the point sets are converted by the MHS into two new
point sets A = {Aα, ARD−α, ALU−β , ALD−γ , ARU−δ} and
B = {Bα, BRD−α, BLU−β , BLD−γ , BRU−δ} in a 1-D se-
quence. Aα = {aα0 , · · · , aαM−1} and Bα = {bα0 , · · · , bαL−1}
are the point sets given by α − scanning of P and R,
respectively. The distances dα(A

α, Bα),dRD−α(A
RD−α,

BRD−α), dLU−β(A
LU−β , BLU−β), dLD−γ(A

LD−γ , BLD−γ),
and dRU−δ(A

RU−δ, BRU−δ), which are the sets of distances
for each point in Aα, ARD−α, ALU−β , ALD−γ , and ARU−δ ,
are computed by

df (A
f , Bf ) = {min

j
∥ afi − bfj ∥}, (9)

i = 0, · · · ,M − 1 and j = 0, · · · , L− 1

where f denotes the five scans types. ∥ · ∥ is the Euclidean
norm distance in 1-D space. The directed hmhsd(A,B) from
A to B is computed by

hmhsd(A,B) =
1

M

M∑
i=0

min(df (A
f , Bf )). (10)

where M is the number of points in the point set A. The
directed hmhsd(B,A) from B to A can be computed similarly.
MHSD is defined as the following:

Hmhsd(A,B) = (11)
max(hmhsd(A,B), hmhsd(B,A)).

4. EXPERIMENTAL RESULTS AND DISCUSSION

In this study, 45 subjects were involved from the experiments.
The hand posture is measured six times for each subject as
changing the directional angle and the location. Figure 6
shows five samples of the data-set. The proposed method with
MHSD are compared with HD and MHD for recognition rate.
In order to evaluate the proposed methods, the Cumulative
Match Scores (CMS) rank order statistic is measured. Ta-
ble 2 shows the comparison with HD and MHD [6][7]. As a
result, the MHD showed the good recognition rate. Neverthe-
less, the proposed method demonstrates a superior result than
other methods.

Table 2. Comparison of hand posture recognition rates
Methods Ranking 1(%) Ranking 5(%)

HD 85.1 90.7
MHD 92.5 96.2

Proposed method 95.9 98.5

Fig. 6. Five samples for hand posture data-set.

5. CONCLUSION

In summary, this study proposed a novel framework for
contact-free based hand biometrics using hand posture recog-
nition. 3-D HPPC was used for HPR, and WLE was intro-
duced for obtaining a template of the hand posture. MHSD
was also introduced for mathematical approaches of shape
matching. Based on the experimental results, this framework
showed superior results for HPR rate.
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