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ABSTRACT

An extremely low-order filter model for source distance ren-

dering in binaural reproduction is proposed in this paper. The

main purpose of such model is to cheaply simulate the effect

that source-listener distance has on the sound waves arriving

at the ears in the near field, a region where the relation be-

tween sound pressure and distance is both highly frequency-

dependent and nonlinear. The reference for the model is based

on an analytical description of a spherical head response, ap-

propriately filtered out so as to include distance-dependent

patterns only. To this regard, the model is objectively seen

to provide an excellent fit in the whole near field, despite its

simplicity.

Index Terms— 3D audio, spatial sound, HRTF

1. INTRODUCTION

Under anechoic conditions, perception of sound source dis-

tance is correlated to the signal’s intensity, even though it is

systematically underestimated for far distances and overesti-

mated for near ones. On the other hand, if the environment

is reverberant, a sensation of changing distance occurs if the

overall intensity is constant but the proportion of reflected to

direct energy, the so-called R/D ratio, is altered. Still, a num-

ber of other cues contribute to a correct perception of distance,

such as distance-dependent spectral effects, familiarity of the

involved sounds, and dynamic cues [1].

When the source is in the far field (i.e. approximately

more than 1.5 m from the center of the listener’s head),

directional cues are roughly distance-independent. By grad-

ually approaching the near field (i.e. when the source is

approximately within 1.5 m from the center of the head),

it is known that whereas ITD (Interaural Time Difference)

remains almost independent from distance, ILD (Interaural

Level Difference) dramatically increases across the whole

spectrum and in particular at low frequencies. Since dis-

tance dependence must then be taken into account in the near

field, a prompt characterization of the head’s response (Head-

Related Transfer Function, HRTF) in such region has to be

studied. For the sake of simplicity, the head of the listener can

be treated as a rigid sphere [2]; therefore its transfer function

will be referred to as spherical transfer function, or STF.

Relatively simple STF-like filter structures for sound

source rendering in the far field have been proposed to date,

e.g. Brown and Duda’s first-order filter [3]. These mod-

els, although replicating with some degree of approximation

the mean magnitude characteristics of the far-field spherical

response, do not simulate the rippled behaviour occurring

for contralateral sources, and, more importantly, have no

parametrization on source distance. Unfortunately, to the

authors’ knowledge, no real-time model including near-field

effects is available in the literature. As a consequence, a

proper approximation to distance effects on the spherical

head model has to be introduced in order to grant an efficient

and effective rendering.

In this paper such an approximation is proposed and ana-

lytically evaluated. In Section 2 we briefly introduce the an-

alytical formulation of the distance-dependent STFs, which

are approximated following our method outlined in Section

3. A real-time filter model directly derived from the previous

analysis is at first objectively evaluated in Section 4.

2. THE SPHERICAL TRANSFER FUNCTION

Within the assumption of an infinitely distant source from the

center of the head, the response related to a fixed observation

point on the sphere’s surface can be described by means of

the following transfer function:

H(µ, θinc) =
1

µ2

∞
∑

m=0

(−i)m−1(2m+ 1)Pm(cos θinc)

h′

m(µ)
, (1)

where θinc is the incidence angle (i.e. the angle between the

ray from the center of the sphere to the source and the ray

to the observation point), Pm and hm represent the Legendre

polynomial of degree m and the mth-order spherical Hankel

function (where h′

m is its first derivative with respect to its

argument), respectively, and µ is the normalized frequency,

defined as

µ = f
2πa

c
, (2)

where c is the speed of sound and a is the sphere radius.

When the assumption of an infinitely distant source is re-

moved, distance dependence can no longer be ignored. Hav-

ing defined the normalized distance to the source ρ as the ratio

between the absolute distance from the center of the sphere
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Fig. 1. Near-field and far-field Spherical Transfer Functions:

ρ = 1.25 (left panel) and ρ = ∞ (right panel).

and the sphere radius, the STF can be evaluated by means of

the following function [4]:

H(ρ,µ,θinc)=−
ρ

µ
e−iµρ

∞
∑

m=0

(2m+1)Pm(cos θinc)
hm(µρ)

h′

m(µ)
, (3)

for each ρ > 1. A description of the evaluation algorithm,

based on recursion relations, can be found in [2]. Fig. 1 shows

the magnitude of the so calculated transfer function against

normalized frequency for 19 different values of the incidence

angle and two distances, corresponding to near- and far-field.

In a previous work [5], the authors have used Principal

Component Analysis (PCA) in order to study common trends

and possible systematic variability in a set of STFs. The re-

sults indicated that angular dependence is much more promi-

nent than distance dependence in the transfer function’s fre-

quency behaviour. Isolating distance information from the

spherical response is thus the first goal towards the design of

a cheap and effective model for the STF, as will be performed

in the following sections.

3. THE NEAR-FIELD TRANSFER FUNCTION

In order to study the effect of source distance in the near field,

a given STF can be normalized to the corresponding far field

spherical response yielding a new transfer function, which we

refer to as Near-Field Transfer Function (NFTF):

HNF (ρ, µ, θinc) =
H(ρ, µ, θinc)

H(∞, µ, θinc)
. (4)

Contrarily to STFs, NFTFs are almost non-rippled functions

that slightly decay with frequency, in an approximatelymono-

tonic fashion. Furthermore, the magnitude boost for small

distances is evident in ipsilateral NFTFs whereas it is less
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Fig. 2. NFTF gain at DC.

prominent in contralateral NFTFs. Such functions are now

analyzed in detail in all of their magnitude features with the

parallel aim of feeding the modeling process. In the follow-

ing, we fix for convenience parameter a to the commonly

cited 8.75-cm average radius for an adult human head [3].

Final results for a different head radius will just require a uni-

form rescaling of the frequency axis.

It could be questioned whether analytical NFTFs ob-

jectively reflect distance-dependent patterns in measured

HRTFs. Unfortunately, most available HRTF recordings are

performed in the far field or in its vicinity at one single given

distance. Furthermore, a proper NFTF will become more

and more sensitive to the geometric features of the complex

scatterer (the head) as the sound source approches and, since

the sphere can be considered as a simple scatterer, it could

become an increasingly worse approximation of the real near

field effects. Beside these lawful observations, various stud-

ies have attested the suitability of the spherical model for the

head in the near field, at least at low frequencies [1].

3.1. DC gain of NFTFs

As a first step towards NFTF analysis, let us lookmore closely

at how the DC gain varies as the source moves away along

a given angular direction. For each of 19 incidence angles,

θinc = [0◦, 180◦] at 10-degree steps, Eq. (3) is sampled at

DC (µ = 0) for a great number of different, exponentially

increasing distances, specifically

ρ = 1.151+
k−1

10 , k = 1, . . . , 250, (5)

and its absolute value calculated, yielding dB gainG0(θinc, ρ).
Fig. 2 plots DC gains as functions of distance and incidence

angle.

In order to model distance dependence of NFTFs at DC

we approximate it as a second-order rational function for all

the 19 different incidence angles. This function, that has the

form

G̃0(θinc, ρ) =
p11(θinc)ρ+ p21(θinc)

ρ2 + q11(θinc)ρ+ q21(θinc)
, (6)
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θinc p11 p21 q11 q21 RMS [dB]

0
◦

12.97 −9.691 −1.136 0.219 0.0027

10
◦

13.19 234.2 18.48 −8.498 0.0223

20
◦

12.13 −11.17 −1.249 0.346 0.0055

30
◦

11.19 −9.035 −1.017 0.336 0.0034

40
◦

9.91 −7.866 −0.83 0.379 0.002

50
◦

8.328 −7.416 −0.666 0.421 0.0009

60
◦

6.493 −7.312 −0.503 0.423 0.0002

70
◦

4.455 −7.278 −0.321 0.382 0.0004

80
◦

2.274 −7.291 −0.11 0.314 0.0005

90
◦

0.018 −7.484 −0.13 0.24 0.0005

100
◦

−2.242 −8.04 0.395 0.177 0.0004

110
◦

−4.433 −9.231 0.699 0.132 0.0003

120
◦

−6.488 −11.61 1.084 0.113 0.0002

130
◦

−8.342 −17.38 1.757 0.142 0.0002

140
◦

−9.93 −48.42 4.764 0.462 0.0004

150
◦

−11.29 9.149 −0.644 −0.138 0.0006

160
◦

−12.22 1.905 0.109 −0.082 0.0003

170
◦

−12.81 −0.748 0.386 −0.058 0.0002

180
◦

−13 −1.32 0.45 −0.055 0.0002

Table 1. Coefficients for Eq. (6) and approximation fitness.

where θinc = 0◦, 10◦, . . . , 180◦, is found with the help of the

MatLab Curve Fitting Toolbox (cftool).

Coefficients p11(θinc), p21(θinc), q11(θinc), and q21(θinc)
for each of the 19 incidence angles are reported in Table 1, as
well as the RMS (root mean square) error measure between

real and approximated DC gains for each incidence angle at

the 250 evaluated distances. The latter values confirm the

overall excellent fitness of the resulting rational functions: in

all cases, RMS(G0, G̃0) < 0.01 dB. In order to model DC

gain for intermediate incidence angles, a simple linear inter-

polation between adjacent functions can be used. The effec-

tive fitness of such an approximation on a dB scale will be

objectively evaluated in Section 4, even for incidence angles

different from those considered up to now.

3.2. Frequency behaviour of NFTFs

The behaviour of NFTFs at DC having been checked, it has to

be studied how much NFTFs depend on frequency and how

such dependence can be efficiently modeled. In order to do

this, the DC gainG0 can act as a further normalization factor,

thus the following operation is performed for a set of NFTFs

computed at the already considered 250 distances and in the

frequency range up to 15 kHz, sampled at 10-Hz steps:

ĤNF (ρ, µ, θinc) =
HNF (ρ, µ, θinc)

G0(θinc, ρ)
. (7)

Fig. 3 shows the frequency behaviour of normalized NFTFs

for a fixed small distance, ρ = 1.25, and the usual 19 inci-

dence angles. All normalized NFTFs lie in the negative dB

space, tending to the 0-dB threshold at most. This means

that DC is always the frequency point of the NFTF where the

gain is maximum. However, note the different high-frequency

trend for ipsilateral and contralateral angles: as an example,

at θinc = 0◦ the magnitude plot looks like that of a high-

frequency shelving filter, whereas at θinc = 180◦ a lowpass

behaviour is observed. For intermediate incidence angles, the

response for ρ = 1.25 gradually morphs from that of a shelv-

ing filter to that of a lowpass filter as the angle increases. The

same behaviour is observed for all the other near-field dis-
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Fig. 3. Frequency trend of normalized NFTFs for ρ = 1.25.

tances, the faster switch rate being observed for small distance

values.

In light of such result, one could think of approximating

the magnitude response of the normalized NFTF through a

shelving or lowpass filter, depending on incidence angle and

distance. Unfortunately, the switch from a shelving to a low-

pass filter at a given incidence angle needs to be smooth in

order to avoid listening artifacts; furthermore, a first-order

lowpass filter excessively cuts high frequencies with respect

to the maximum 10-dB decay observed in the normalized

NFTF plots. These shortcomings can be solved, although at

the cost of precision loss, by always approximating a normal-

ized NFTF through a first-order high-frequency shelving fil-

ter. The implementation chosen for the filter is the one pro-

posed in [6],

Hsh(z) = 1 +
H0

2

(

1−
z−1 + ac

1 + acz−1

)

, (8)

ac =
V0 tan

(

π fc
fs

)

− 1

V0 tan
(

π fc
fs

)

+ 1
, V0 = 10

G∞

20 , (9)

where fs is the sampling frequency.

Now it has to be highlighted how the two key parameters

of the shelving filter, cutoff frequency fc and asymptotic high-

frequency gain G∞, can be extracted from ĤNF in order to

yield a satisfactory approximation. First, the high-frequency

gain is calculated as the (negative) dB gain of the NFTF at 15
kHz. The choice of a high frequency point is needed to best

model the slope of near contralateral NFTFs in the whole au-

dible range. Second, the cutoff frequency is calculated as the

frequency point where ĤNF has a negative dB gain which ap-

proximates two thirds of the high-frequency gain. This point

is heuristically preferred to the point where the gain is G∞

2
in

order to minimize differences in magnitude between a shelv-

ing filter and a lowpass filter for contralateral NFTFs. The

quality of the shelving filter approximation is well depicted

in Fig. 4 for three different distances at all incidence angles.

The variation of parametersG∞ and fc along distance and

incidence angle was also studied. Similarly to what was done

2032



Fig. 4. Normalized NFTFs (left panels) versus shelving-filter

approximation (right panels) for ρ = 1.25, ρ = 4, and ρ =
16.

θinc p12 p22 q12 q22 RMS [dB]

0
◦

−4.391 2.123 −0.55 −0.061 0.0007

10
◦

−4.314 −2.782 0.59 −0.173 0.0016

20
◦

−4.18 4.224 −1.006 −0.021 0.0057

30
◦

−4.012 3.039 −0.563 −0.316 0.0116

40
◦

−3.874 −0.566 0.665 −1.129 0.0199

50
◦

−4.099 −34.74 11.39 −8.301 0.039

60
◦

−3.868 3.271 −1.571 0.637 0.0151

70
◦

−5.021 0.023 −0.875 0.325 0.0097

80
◦

−6.724 −8.965 0.37 −0.083 0.0112

90
◦

−8.693 −58.38 5.446 −1.188 0.0179

100
◦

−11.17 11.47 −1.131 0.103 0.0217

110
◦

−12.08 8.716 −0.631 −0.12 0.0069

120
◦

−11.13 21.8 −2.009 0.098 0.0018

130
◦

−11.1 1.91 0.15 −0.401 0.0008

140
◦

−9.719 −0.043 0.243 −0.411 0.0014

150
◦

−8.417 −0.659 0.147 −0.344 0.0012

160
◦

−7.437 0.395 −0.178 −0.184 0.0006

170
◦

−6.783 2.662 −0.671 0.05 0.0006

180
◦

−6.584 3.387 −0.836 0.131 0.0008

Table 2. Coefficients for Eq. (10) and approximation fitness.

for DC gains, a second-order rational function was fitted as

follows to the evolution ofG∞ and fc along distance at given

incidence angles:

G̃∞(θinc, ρ) =
p12(θinc)ρ+ p22(θinc)

ρ2 + q12(θinc)ρ+ q22(θinc)
, (10)

f̃c(θinc, ρ) =
p13ρ

2 + p23(θinc)ρ+ p33(θinc)

ρ2 + q13(θinc)ρ+ q23(θinc)
. (11)

Note the choice of a second-order numerator that allows

greater flexibility in the approximation of the central fre-

quency behaviour, which is more complex with respect to

that of gains. Table 2 and Table 3 summarize fitness scores

and parameters’ values for each of the two functional approx-

imations.

The approximation of G∞ is overall excellent, never ex-

ceeding a mean RMS error of 0.04 dB in the considered an-

gular directions. Similarly, the approximation provided by f̃c
yields a mean RMS error that is below the actual frequency

resolution of 10 Hz for almost 70% of the considered inci-

θinc p13 p23 p33 q13 q23 RMS [Hz]

0
◦

0.457 −0.668 0.174 −1.746 0.699 1.19

10
◦

0.455 0.142 −0.115 −0.01 −0.348 0.92

20
◦

−0.87 3404 −1699 7354 −5350 3.36

30
◦

0.465 −0.913 0.437 −2.181 1.188 7.01

40
◦

0.494 −0.669 0.658 −1.196 0.256 19.14

50
◦

0.549 −1.208 2.02 −1.59 0.816 30.67

60
◦

0.663 −1.756 6.815 −1.296 1.166 21.65

70
◦

0.691 4.655 0.614 −0.889 0.76 60.32

80
◦

3.507 55.09 589.3 29.23 59.51 29.59

90
◦

−27.41 10336 16818 1945 1707 36.16

100
◦

6.371 1.735 −9.389 −0.058 −1.118 4.54

110
◦

7.032 40.88 −44.09 5.635 −6.18 2.53

120
◦

7.092 23.86 −23.61 3.308 −3.392 2.72

130
◦

7.463 102.8 −92.27 13.88 −12.67 2.33

140
◦

7.453 −6.145 −1.809 −0.877 −0.19 2.9

150
◦

8.101 −18.1 10.54 −2.23 1.295 5.28

160
◦

8.702 −9.05 0.532 −0.96 −0.023 2.15

170
◦

8.925 −9.03 0.285 −0.905 −0.079 3.71

180
◦

9.317 −6.888 −2.082 −0.566 −0.398 3.87

Table 3. Coefficients for Eq. (11) and approximation fitness.

dence angles. Again, an interpolation of adjacent polynomi-

als analogous to the one used for the DC gain is required to

model parameters G̃∞ and f̃c for intermediate angular values.

4. A MODEL FOR NFTF RENDERING

The analysis performed in the previous section allows the

straightforward construction of a filter model for distance ren-

dering, that can be easily integrated with an infinite-distance

spherical model of the head following one of the implemen-

tations available in the literature [3]. In fact, if the latter is

modeled through a filterH∞

sphere that takes the incidence angle

θinc as input, the information given by the NFTF can be pro-

vided by a cascade of a multiplicative gainG0 and a shelving

filterHsh.

The general filter structure is sketched in Fig. 5. Based

on distance and incidence angle information, the “Parameter

Extraction” computation block linearly interpolates functions

G̃0, G̃∞ and f̃c using Eq. (6), Eq. (10), and Eq. (11) respec-

tively; afterwards, G̃0(θinc, ρ) is used as multiplicative factor

whereas G̃∞(θinc, ρ) and f̃c(θinc, ρ) are feeded as parameters

to the shelving filter.

A crucial question is the overall goodness of modelHdist,

that is, whether all the introduced approximations objectively

unsettle the magnitude response of original NFTFs as com-

puted through Eq. (3) and Eq. (4). The quality of the approx-

imation offered by the model is attested through a measure of

spectral distortion widely used in recent literature [7]:

SD =

√

√

√

√

1

N

N
∑

i=1

(

20 log10
|H(fi)|

|H̃(fi)|

)2

[dB], (12)

where H is the original response (here HNF ), H̃ is the re-

constructed response (here Hdist), and N is the number of

available frequencies in the considered range, that in this case

is limited between 100 Hz and 15 kHz. The error measure

was calculated either for spatial locations that were consid-

ered during the analysis process and new ones, thanks to the

functional representation and interpolation of the key param-

eters. Specifically, the magnitude ofHdist was computed via
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Fig. 5. A model for a spherical head including distance de-

pendence.

Fig. 6. Spectral distortion introduced by modelHdist.

the model for the usual 250 distances, this time at 5-degree
angular steps (θinc = 0◦, 5◦, 10◦, . . . , 180◦), and compared to

the magnitude response of the corresponding original NFTFs

up to 15 kHz. The distance-dependent spectral distortion plot
for the 37 considered incidence angles is shown in Fig. 6.

Notice that the overall fitness of the approximation is ex-

cellent in almost the whole near field, being the SD lower than

1 dB in all of the considered source locations except for the

very nearest ones around θinc = 90◦. The evidenced discrep-
ancy is well explained by the frequency behaviour of the nor-

malized NFTF at these positions which is halfway between

that of a shelving filter and of a lowpass filter. Also note how

there is no evident relative SD increase between reconstructed

NFTFs for angles that were considered in the analysis pro-

cess and for interpolated angular directions, except for a small

dump at θinc = 5◦ and ρ < 1.5. As a consequence, linear

interpolations of the key coefficients are already effective as

they are, not needing to be improved through higher-order in-

terpolations and/or a denser sampling along the angular axis

during the analysis process.

Finally, the almost null SD for high ρ values indicates that

near-field effects gradually dissolve with distance just like in

the analytical NFTF, i.e. the contribution of Hdist tends to 1

as ρ → ∞. This result attests the validity of the above model

for the whole spatial range, including the far field.

5. CONCLUSIONS AND OPEN ISSUES

A first-order filter model for near-field effects rendering,

thought for real-time binaural listening applications, was

studied in this paper. The fit to analytical responses provided

by the model was objectively proved to be overall appropri-

ate; experimental evaluations on its subjective effectiveness

are a subsequent necessary step.

Further work should take into consideration alternative fil-

ter structures to the single, first-order shelving filter, such as

a higher-order shelving filter or a lowpass filter realization al-

lowing slope control for contralateral positions. Also, if one

remains within the assumption that ITD does not change with

distance, the design of an all-pass section counterbalancing

the effect that the shelving/lowpass filter’s phase response has

on ITD needs to be carried on. Last but not least, the choice

of the far-field head filter to be coupled with the distance ren-

dering model will turn out to be pivotal for a good STF ap-

proximation.
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