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ABSTRACT 

This paper presents a novel strategy for implementing fully 
adaptive interpolated finite impulse response (FAIFIR) 
structures using either the least-mean-square (LMS) or the 
normalized LMS algorithms. The aim of such a strategy is 
to mitigate numerical stability issues arising from 
simultaneously adapting the two cascaded filters (sparse 
filter and interpolator) that compose a FAIFIR structure. In 
this context, a modification in the structure of the 
interpolator is proposed with no impact on both the 
computational complexity and applicability of the FAIFIR 
structure. As a result, adaptive filters with enhanced 
numerical properties are obtained. Numerical simulation 
results are presented attesting the effectiveness of the 
proposed strategy.  

Index Terms—Adaptive algorithm, adaptive filters, 
interpolation, least mean square algorithms. 
  

1. INTRODUCTION 
The processing capacity of modern digital signal processors 
(DSPs) has grown considerably over the last decades. As a 
consequence, signal processing algorithms with higher 
computational complexity, such as some adaptive filtering 
algorithms, can now be extensively used in practical 
applications. On the other hand, several of these algorithms 
have faced severe complexity constraints because of their 
increasing use in embedded systems. In this context, the 
development of effective adaptive filtering algorithms with 
reduced computational burden is of fundamental importance 
for supporting several embedded signal processing 
applications. 

Adaptive filtering algorithms very often use a standard 
finite impulse response (FIR) filter as their underlying 
structure [1]. However, the computational complexity of 
this kind of filter can be very high in some applications. 
Thus, reduced-complexity FIR implementations are 
frequently used in place of standard FIR filters. One among 
these implementations is the interpolated FIR (IFIR) filter 
[2], [3], which has been successfully used for active noise 
control [4], audio processing in hearing aids [5], echo 
cancellation [6], and other applications. 
                                                           
This work was supported in part by the National Council for Scientific and 
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The reduced complexity of IFIR structures is obtained 
by using a sparse FIR filter cascaded with an interpolator 
(both with reduced coefficient number). In the adaptive 
context, IFIR filters are implemented either by updating 
only the coefficients of the sparse filter (adaptive IFIR – 
AIFIR) [3] or by updating the coefficients from both sparse 
filter and interpolator (fully adaptive IFIR – FAIFIR) [7]-
[10]. The AIFIR approach presents smaller computational 
burden than the FAIFIR, while the latter commonly lead to 
better steady-state performance than the former [10]. Since 
the difference of complexity between such approaches is 
relatively small [10], the use of the FAIFIR approach is 
often preferred to the AIFIR. However, the adaptation of 
FAIFIR structures is somewhat awkward because of the 
simultaneous update of two cascaded filters (sparse filter 
and interpolator), which may result in convergence 
problems that do not occur in AIFIR structures.  

This paper presents a novel strategy for implementing 
FAIFIR filters in which the aforementioned convergence 
issues are circumvented by modifying the structure of the 
interpolator. Such a strategy is developed considering the 
IFIR filter with removed boundary effect (BIFIR), which 
presents the best performance among the standard IFIR 
implementations with fixed sparseness [7], [10]. 
Nevertheless, the proposed strategy can be used as a 
foundation for developing similar strategies aiming at other 
FAIFIR implementations [8], [9]. Numerical simulation 
results are presented aiming to verify the performance of the 
proposed approach. 

This paper is organized as follows. Section 2 describes 
the main characteristics of BIFIR structures as well as their 
fully adaptive (FABIFIR) implementation. In Section 3, the 
proposed strategy to carry out FABIFIR filters is discussed. 
Section 4 presents simulation results aiming to evaluate the 
performance of the proposed approach. Finally, concluding 
remarks are presented in Section 5. 

2. FULLY ADAPTIVE IFIR FILTERS WITH REMOVED 
BOUNDARY EFFECT 

Fig. 1 illustrates the block diagram of an IFIR filter with 
sw  representing the sparse filter and ,g  the interpolator. 

The memory size of the sparse filter is N  and its coefficient 
vector is obtained by setting to zero 1L −  of each L  
coefficients of the coefficient vector 0 1[w w=w  
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T
1]Nw −  of a standard FIR filter, with L  denoting the 

sparseness factor [10]. Thus, the 1N ×  coefficient vector of 
the sparse filter is given by 

s

T
s 0 2 ( 1)[ 0 0 0 0 0]L L N Lw w w w −=w  (1) 

where ( 1) 1sN N L= − +⎢ ⎥⎣ ⎦  is the number of nonzero 
coefficients in (1) with ⋅⎢ ⎥⎣ ⎦  denoting the truncation 
operation. Regarding the interpolator, its coefficient vector 
is given by 
 T

0 1 2 1[ ]Mg g g g −=g  (2) 

with 2 1.M L= −  

sw gg( )x n ( )y nˆ(  )x n
 

Fig. 1. Block diagram of an IFIR filter. 

Also in Fig. 1, ( )x n  represents the input signal, ˆ( ),x n  the 
input signal filtered by the sparse filter, and 

 T ˆ( ) ( )y n n= g x  (3) 

is the output signal with 
 Tˆ ˆ ˆ ˆ ˆ( ) [ ( ) ( 1) ( 2) ( 1)]n x n x n x n x n M= − − − −x  (4) 
denoting the interpolator input vector. The equivalent 
coefficient vector of the IFIR filter, which corresponds to its 
impulse response, is given by 
 i s s= =w Gw W g  (5) 

where G  and sW  are convolution matrices [11], with 
dimensions 1N M N+ − ×  and 1 ,N M M+ − ×  obtained 
from g  and s ,w  respectively. As described in [10], the 
boundary effect is a characteristic of the equivalent vector 

iw  that has a significant impact on the performance of the 
IFIR filter. To remove such an effect, one pre-multiplies iw  
by a transformation matrix  
 [ ]N=T 0 I 0  (6) 

with 0  representing a null matrix with dimension 1N L× −  
and ,NI  an identity matrix with dimension N N×  [12]. For 
illustration purposes, let us consider, for instance, the case 
of a BIFIR filter with 7N =  and 2,L =  which implies 

3,M =  T
0 1 2[ ] ,g g g=g  T

s 0 2 4 6[ 0 0 0 ] ,w w w w=w  and 
an equivalent coefficient vector with removed boundary 
effect given by 

i i s 1 0 2 0 0 2 1 2
T

2 2 0 4 1 4 2 4 0 6 1 6

{ [ ]
[ ] [ ] } .

g w g w g w g w
g w g w g w g w g w g w

′ = = = +
+ +

w Tw TGw
 

(7) 
Moreover, considering the standard practice of using a 
triangular window for choosing the interpolator coefficients 
[3], [10], one obtains T[0.5 1 0.5]=g  and 

 i 0 0 2 2 2 4
T

4 4 6 6

[ 0.5 0.5 0.5 0.5  
0.5 0.5 ] .

w w w w w w
w w w w

′ = + +

+

w
 (8) 

By comparing (1), (7), and (8), we observe that i) the 
coefficients of the sparse filter sw  are reproduced in i ,′w  
and ii) the zero coefficients of sw  are recreated in i′w  [see 
the boxed coefficients in (8)]. The practical implementation 
of the boundary effect removal is carried out replacing the 
interpolator input vector ˆ ( )nx  by a modified one given by 
[10] 
 T T

sˆ ( ) ( )n n′ =x W T x  (9) 

with T( ) [ ( ) ( 1) ( 1)] ,n x n x n x n N= − − +x  implying a 
slight increase in the computational burden of 2 2L −  
operations per sample, since (9) can be obtained in a 
recursive way [10].  

In the adaptive context, the update expressions to 
implement FABIFIR filters using the LMS algorithm are 
[10] 
 1 ˆ( 1) ( ) 2 ( ) ( )n n e n n′+ = + μg g x  (10) 
and 
 s s 2( 1) ( ) 2 ( ) ( )n n e n n′+ = + μw w x  (11) 

where 1μ  and 2μ  denote the step-size parameters and 

 ( ) ( ) ( )e n d n y n= −  (12) 
is the error signal with ( )d n  representing the desired signal. 
Also in (10) and (11), ˆ ( )n′x  and ( )n′x  correspond to 
approximate versions of T T

s ( ) ( )n nW T x  and T T( ) ( ),n nG T x  
respectively, both obtained recursively [10]. 

3. MODIFIED FABIFIR FILTERS 
As discussed in [10], among the adaptive realizations of 
IFIR filters with fixed sparseness characteristics, the 
FABIFIR implementation is that presenting the best 
performance in terms of the mean-square error (MSE) at 
steady state. However, the use of such an implementation is 
often hampered because of its poor convergence 
characteristics as compared with adaptive IFIR 
implementations with fixed interpolators. The main 
convergence issues of FABIFIR filters arise from 
simultaneously adapting two cascaded filters. A first 
drawback is the stalling of the adaptive algorithm if g  and 

sw  are zero. In this case, G  and sW  turn into zero 
matrices and, consequently, ˆ ( )n′x  and ( )n′x  are zeroed in 
(10) and (11). A second and more troublesome convergence 
issue of FABIFIR filters is related to the values attained by 
the coefficients of vectors g  and sw  after convergence. 
Note that the equivalent coefficient vector i′w  depends on 
g  and sw  as described in (7). From such an expression, 
one notices that the use of coefficient vectors c=g g  and 

s s(1/ ) ,c=w w  with c  denoting an arbitrary scalar value, 
results in the same i′w  as g  and s ,w  i.e., 
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 ( )i s s s( ) / .c c′ = = =w TGw TGw T G w  (13) 

Then considering (13), we verify that there are infinite 
combinations of g  and sw  that produce the same i .′w  
Moreover, in situations in which c  is much larger than 
1/ ,c  i′w  can be obtained from a vector c=g g  with large-
valued elements and a vector s s(1/ )c=w w  with small-
valued ones. Such characteristic may be particularly 
undesirable in implementations using fixed-point arithmetic. 
In these cases, small values may imply loss of precision and 
large values may exceed the maximum value supported by 
the adopted numerical representation (overflow). Thus, one 
has an important threat for both numerical stability and 
algorithm convergence. 

Aiming to improve the convergence characteristics of 
the FABIFIR filter, a new strategy for updating the 
coefficients is proposed in this paper. The main idea is to 
exploit the role of the central coefficient of the interpolator 
in the FABIFIR structure. Such a coefficient has the specific 
task of reproducing the coefficients of the sparse filter in the 
equivalent structure, which can be verified comparing (7) 
and (8) as well as observing that 1g  is a multiplier of the 
coefficients of the sparse filter in (7). Thus, in the adaptive 
process, one can fix the central coefficient of the 
interpolator to an arbitrary value k  without loss of 
generality in the equivalent structure. Such a strategy 
prevents the previously mentioned stalling of the adaptive 
process, since the interpolator coefficient vector g  always 
presents at least one nonzero coefficient. Additionally, the 
numerical stability issue is also overcome, since a given i′w  
can only be obtained from a unique combination of the 
sparse filter coefficient vector sw  and the interpolator 
coefficient vector with central coefficient fixed to k  
(denoted here by [ ] ).kg  Such a feature is discussed in the 
next section.  

3.1. Uniqueness of the Proposed Solution 
If the proposed strategy of fixing the central coefficient of 
the interpolator to k  leads to unique vectors sw  and [ ]kg  
for a given i ,′w  the equality 

 i [ ]a sa [ ]b sbk k′ = =w TG w TG w  (14) 

must only be upheld for sa sb=w w  and [ ]a [ ]b .k k=g g  In 
(14), saw  and sbw  are generic sparse vectors in the form of 
(1), while [ ]akG  and [ ]bkG  are convolution matrices 
obtained from generic vectors [ ]akg  and [ ]bkg  with the 
central coefficient set to .k  By considering (6) and the 
structure of [ ] ,kG  we notice that [ ]kTG  is an N N×  matrix 
with all elements in the main diagonal equal to .k  Thus,  
 [ ] [ ]k N kk= +TG I G  (15) 

where NI  is an identity matrix with dimension N N×  and 

[ ] ,kG  a matrix obtained zeroing the elements in the main 

diagonal of [ ].kTG  Then, considering (15), (14) can be 
rewritten as 
 i sa [ ]a sa sb [ ]b sb.k kk k′ = + = +w w G w w G w  (16) 

By analyzing each of the terms from (16), we verify that 
a) sakw  and sbkw  are vectors with elements different from 
zero only in the positions whose indices are multiple of k  
[see (1)], and b) the vectors resulting from [ ]a sakG w  and 

[ ]b sbkG w  are also sparse with nonzero coefficients only in 
the positions whose indices are not multiples of .k  Thus, 
(16) can be split into two terms, i.e., 
 sa sbk k=w w  (17) 

and [ ]a sa [ ]b sb.k k=G w G w  Since k  is a scalar, (17) and 
consequently (14) can only be fulfilled if sa sb.=w w  Thus, 
one verifies that there is a unique vector sw  for a given i .′w  
Thereby, considering (5), (7), and also that sa sb ,=w w  (14) 
can be rewritten as 
 i sa [ ]a sb [ ]b sa [ ]b .k k k′ = = =w TW g TW g TW g  (18) 

In practice, saTW  has dimension N M×  and a full rank 
equal to .M  Therefore, saTW  presents a left inverse [12], 
denoted here by sa( ) ,+TW  in such a way that 

sa sa( ) ,M
+ =TW TW I  with MI  representing an M M×  

identity matrix. Thus, by pre-multiplying the terms of (18) 
by sa( ) ,+TW  we get 
 [ ]a [ ]b .k k=g g  (19) 

From (19), one observes that a given i′w  can only be 
obtained from a unique [ ].kg  As a result, we verify the 
uniqueness of both sw  and [ ]kg  for a given i .′w  

3.2. Interpolator Coefficient Update 
Aiming to obtain the coefficient update equation for both 
the interpolator and sparse filter, a constrained approach is 
considered here [3], [11]. In the case of the interpolator, the 
constraint resulting from fixing the central coefficient to k  
is obtained as 
 T

i [ ] ( )k n k=c g  (20) 
where 
 T

i
1 elements 1 elements

[0 0 1 0 0]
L L− −

=c  (21) 

is the constraint vector. In the case of using the LMS 
algorithm, the update equation is  
 

[ ][ ] [ ] g( 1) ( ) ( )
kk kn n J n+ = − μ ∇gg g  (22) 

with gμ  representing the step-size parameter and 

[ ]
( ),

k
J n∇g  the gradient of a cost function obtained by 

including the constraint, using the Lagrange multiplier 
method [11], to the instantaneous estimate of the MSE. The 
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cost function is given by 

 2 T
i [ ]( ) ( ) ( )[ ( ) ]kJ n e n n n k= + θ −c g  (23) 

where ( )nθ  denotes the Lagrange multiplier. By evaluating 

[ ]
( ),

k
J n∇g  substituting the resulting expression into (22), 

solving for the Lagrange multiplier similarly to [11], and 
considering the recursive form of computing 

T T
sˆ ( ) ( ) ( ),n n n′ ≅x W T x  the following expression for 

adapting the interpolator is obtained: 
 [ ] i [ ] i i iˆ( 1) ( ) 2 ( ) ( )k kn n e n n k′+ = + μ +g P g P x c  (24) 

with T
i i i .M= −P I c c  The computational cost to implement 

(24) is slightly smaller than the cost to obtain (10) (standard 
FABIFIR case) mainly because of the pre-multiplication of 
some right-hand side (R.H.S.) terms of (24) by i ,P  which 
implies to update all interpolator coefficients except the 
central one. In the case of the NLMS algorithm, the 
coefficient update equation is obtained by minimizing the 
Euclidian norm of 
 [ ] [ ] [ ]( 1) ( 1) ( )k k kn n nδ + = + −g g g  (25) 

under the following constraints:  
 T T

[ ] s( 1) ( ) ( )k n n d n+ =g W T x  (26) 
and  
 T

i [ ] ( 1) .k n k+ =c g  (27) 

Then, using the Lagrange multiplier method to include the 
constraints in the cost function, evaluating the gradient of 
such a cost function with respect to [ ] ( 1),k n +g  solving the 
resulting expression for the Lagrange multipliers as in [11], 
and considering the recursive computation of 

T T
sˆ ( ) ( ) ( ),n n n′ ≅x W T x the following update expression for 

the NLMS algorithm is obtained: 
g

[ ] i [ ] i i2
i g

ˆ( 1) ( ) ( ) ( )
ˆ ( )

k kn n e n n k
n

α
′+ = + +

′ + ψ
g P g P x c

P x
 (28) 

where gα  denotes the control parameter and g 0ψ >  is a 
regularization parameter that prevents division by zero.  
3.3. Sparse Filter Coefficient Update 
The expressions to update the coefficients of the sparse 
filter are obtained considering that the constraints arising 
from the sparseness of such a filter can be described as [3], 
[11] 
 T

s ( )n =C w f  (29) 

where C  is the constraint matrix and ,f  a response vector. 
Following the steps presented in [11], one obtains the 
following expression for updating the sparse filter using the 
LMS algorithm: 
 s s w( 1) ( ) 2 ( ) ( )n n e n n′+ = + μw Pw Px  (30) 

with T
N= −P I CC  and wμ  denoting the step size. In 

addition, for the NLMS algorithm, again following the steps 
from [11], one obtains 

 w
s s 2

w

( 1) ( ) ( ) ( )
( )

n n e n n
n

α ′+ = +
′ + ψ

w Pw Px
Px

 (31) 

where wα  and wψ  represent control parameters similar to 

gα  and g ,ψ  respectively. 

4. SIMULATION RESULTS 
In this section, simulation results are shown aiming to assess 
the performance of the modified FABIFIR (MFABIFIR) 
implementation (proposed approach) as compared with the 
FABIFIR approach proposed in [10]. Thus, FABIFIR and 
MFABIFIR filters are applied to a system modeling 
problem and compared firstly in terms of the MSE. The 
MSE curves are obtained from Monte Carlo simulations 
(average of 100 independent runs). The FABIFIR and 
MFABIFIR structures are also confronted in terms of the 
quadratic norms of sw  and g  at the end of each 
independent run. The goal of such a comparison is to verify 
the fluctuation of sw  and g  after convergence. Here, the 
FABIFIR and MFABIFIR approaches consider a sparseness 
factor 2,L =  an initial value of the interpolator coefficient 
vector given by T(0) [0 1 0] ,=g  and memory size 71. The 
central coefficient of the interpolator from the MFABIFIR 
structure is fixed to 1.k =  The adaptive algorithm is the 
NLMS with g w 0.5α = α =  and g w 1.ψ = ψ =  The input 
signal is white and Gaussian with unity variance, and the 
noise (added to the output of the plant) is also white and 
Gaussian with variance 2 810z

−σ =  (80 dB SNR). In 
addition, the plant presents the impulse response shown in 
Fig. 2 (memory size 71). 

The MSE curves obtained considering the simulation 
scenario described above are shown in Fig. 3. There, we 
notice the similar performance of the FABIFIR and 
MFABIFIR filters in steady state, attesting that both filters 
get nearly the same equivalent coefficient vector. On the 
other hand, from the final quadratic norms of sw  and g  
illustrated in Fig. 4, we observe a considerable fluctuation 
for the FAIFIR filter (dark and gray solid lines), while the 
fluctuation is unnoticeable for the proposed MFABIFIR 
filter (dashed and dotted lines). 

To assess the performance of the FABIFIR and the 
proposed MFABIFIR filter under numerical constraints, we 
consider a second simulation scenario in which we limit the 
absolute value of each coefficient to 1.5 (saturation 
constraints). Note that these constraints are very mild 
considering the values of the plant coefficients (the larger 
one is equal to one) and also the constraints found in 
practical applications (where the coefficients and signal 
samples often present bounded values and limited numerical 
precision). The MSE curves obtained using the saturation 
constraints are shown in Fig. 5. We can observe the poor 
performance of the FABIFIR filter as compared with the 
proposed MFABIFIR, which presented a result as good as 
the one obtained without any numerical constraints. From 
the results of final quadratic norms shown in Fig. 6, one 
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observes smaller but still considerable fluctuations of the 
norms of sw  and g  for the FABIFIR filter, while the 
fluctuations are again unnoticeable for the MFABIFIR. 
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Fig. 2. Impulse response of the plant. 
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Fig. 3. MSE curves obtained without using numerical 
constraints. 
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Fig. 4. Quadratic norms obtained at the end of each 
independent run without the use of numerical constraints. 
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Fig. 5. MSE curves obtained using numerical constraints. 
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Fig. 6. Quadratic norms obtained at the end of each 
independent run using numerical constraints. 

5. CONCLUDING REMARKS 

In this paper, a novel effective strategy for implementing 
fully adaptive IFIR filters was discussed. Such a strategy is 
based on modifying the structure of the interpolator aiming 
to overcome convergence issues and to ensure numerical 
stability. The obtained implementation outperforms the 
conventional fully adaptive IFIR in terms of convergence 
characteristics and numerical properties, as well as exhibits 
a slightly smaller computational cost. Numerical simulation 
results were presented attesting the effectiveness of the 
proposed strategy.  
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