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ABSTRACT

Traditionally, time difference of arrival (TDOA) based acous-
tic source tracking consists of two stages, more precisely, es-
timation of TDOAs followed by a tracking algorithm. In gen-
eral, these two stages are performed separately and presume
that (1) TDOAs can be estimated reliably; and (2) the errors
in detection behave in a well-defined fashion. The presence of
noise and reverberation, however, leads to multimodal TDOA
distributions and causes larger errors in the estimates, which
ultimately lowers the tracking performance. To counteract
this effect, we propose an approach that enhances TDOA es-
timation by (1) accounting for the multimodal aspect through
a Gaussian mixture model and (2) integrating knowledge that
has been obtained in the tracking stage. In doing so, this ap-
proach tightly couples the two stages. Experimental results on
the AV16.3 corpus show that the proposed approach signifi-
cantly improves the tracking performance compared to vari-
ous other tracking algorithms.

Index Terms— Direction of arrival estimation, Tracking,
Microphone Arrays, Kalman filters

1. INTRODUCTION

Tracking acoustic sources is becoming, increasingly, more
important, with the increase in number of applications, such
as (multiparty) speech enhancement/separation, automatic
camera steering, etc. TDOA-based source tracking solves this
problem in two stages, namely a detection stage and a track-
ing stage. In the detection stage, the TDOA which is intro-
duced at each sensor pair is estimated, typically, under use
of the generalized cross correlation (GCC) [1]. In the track-
ing stage, the source position is triangulated in a consistent
fashion by integrating the estimated TDOAs through use of
a Kalman filter extension or a particle filter [2, 3, 4]. Un-
fortunately, the tracking performance degrades due to noise
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and multi-path effects. For instance, under room acousti-
cal conditions, early reflections and reverberation corrupt the
GCCs through smearing and through the introduction of sec-
ondary peaks [5, 6]. This in turn affects the tracking algo-
rithms, which assume the error is a stationary Gaussian pro-
cess whereas the TDOA error in a multi-path environment is
rather time-varying and multimodal.

Motivated by previous works [4, 6], this paper proposes
a novel probabilistic approach, which enhances TDOA esti-
mates by interpreting the normalized GCC as a probability
density function (pdf) of the TDOAs. More precisely in this
approach, (1) a Gaussian distribution is associated to each
GCC peak, as a consequence of which the TDOA pdf is ap-
proximated by a Gaussian mixture model (GMM). Such an
approximation is realistic because it takes into account the
multimodal aspect of TDOAs. In addition, it also allows us
to integrate knowledge that has been obtained in the tracking
stage. Then, (2) the TDOA pdf, which the tracking algorithm
expects at the current time instant, is predicted and the mix-
ture weights of the above GMM are updated by measuring the
“similarity” between each of its component and the predicted
TDOA pdf. Finally, (3) the enhanced TDOA is obtained. We
evaluate the proposed approach by comparing different track-
ing algorithms on the AV16.3 corpus [7], a real corpus with
different motion scenarios. Our studies show that the pro-
posed approach significantly reduces the angular error when
compared to conventional approaches.

The paper is organized as follows. Section 2 provides
a brief overview on acoustic source tracking problem. Sec-
tion 3 presents the proposed approach. Section 4 presents the
experimental results. Finally, in Section 5 we conclude.

2. ACOUSTIC SOURCE TRACKING PROBLEM

The arrival of sound waves at a microphone array introduces
time differences between the individual sensor pairs. This
happens in dependence of the angle of arrival – that is, the
azimuth θ and elevation φ – as well as the positions mi, i =
1, . . . ,M of the microphones. Under the far field assumption,
in which the distance of the source from the microphones is
neglected, the TDOA at the n-th sensor pair n = {mi,mh}
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with i 6= h, can be calculated as:

τn (d[θ, φ]) =
d[θ, φ]T (mi −mh)

c
(1)

where c denotes the speed of sound and d[θ, φ] denotes the
direction of arrival

[
cos(φ) sin(θ), cos(φ) cos(θ), sin(φ)

]T
.

Source localization approaches may use these time differ-
ences by either

(a) constructing a spatial filter (beamformer), which scans
all possible source locations, and then taking that posi-
tion where the signal energy is maximized [5].

(b) using a two stage approach, which consists in first esti-
mating the TDOAs of all considered microphone pairs
and then inferring the most likely source position [2, 3].

As our approach falls into the second category we pro-
ceed by first reviewing the Bayesian tracking framework in
Section 2.1. TDOA estimation is explained in Section 2.2.
Section 2.3 finally elaborates on how source localization can
be performed based on estimated TDOAs.

2.1. Bayesian Tracking Framework

The problem of tracking a time-varying system state xt based
on a sequence y1:t = {y1, . . . , yt} of corresponding observa-
tions is usually formulated as a Bayesian estimation problem
in which

• Step 1: a process model xt = f(xt−1, vt) is used to
construct a prior p(xt|y1:t−1) for the state estimation
problem at time t.

• Step 2: the joint predictive distribution p(xt, yt|y1:t−1)
of state and observation is constructed according to a
measurement model yt = h(xt, wt) with measurement
noise wt.

• Step 3: the posterior distribution p(xt|y1:t) is ob-
tained by conditioning the joint predictive density
p(xt, yt|y1:t−1) on the realized (actually measured) ob-
servation Yt = yt.

The first step is accomplished by transforming the joint
random variable of the last state Xt−1 and process noise Vt
according to f : Xt = f (Xt−1, Vt). In step 2, the joint distri-
bution of Xt and Yt is constructed by transforming (Xt,Wt)

according to the augmented measurement function h̃ [8]:[
Xt

Yt

]
= h̃

([
Xt

Wt

])
with h̃

([
xt
wt

])
,

[
xt

h(xt, wt)

]
.

Recursion of the above mentioned transformations form
the Bayesian tracking framework. The posterior filtering dis-
tribution p(xt|y1:t) constitutes the complete solution to the
sequential probabilistic inference problem and allows us to
calculate any optimal estimate of the state. Although this ap-
proach appears to be straight-forward, the optimal solution

is usually tractable only for linear and Gaussian systems, in
which case all the involved random variables remain Gaussian
at all times and the posterior can be obtained as a conditional
Gaussian distribution [8]. This analytical closed form solu-
tion is generally known as the Kalman filter (KF). Most real-
world systems, however, are nonlinear and/or non-Gaussian.
Therefore the optimal solution is intractable and approximate
solutions must be used. These include well-known extensions
of the Kalman filter, such as the Unscented Kalman Filter
(UKF) [2], the Extended Kalman Filter (EKF) [3], sequen-
tial Monte-Carlo methods (particle filters) [4, 6] and Gaus-
sian sum filters [9, 10].

2.2. GCC-Based TDOA Estimation

The most popular approach to estimate the TDOA of a mi-
crophone pair n = {mi,mh} is to use the generalized cross-
correlation (GCC) with Phase Transform (PHAT) weighting
[1]. This approach is based on calculating the correlation of
the signals si(t) and sh(t), which have been received at the
microphones, according to:

Rn(τ) =
1

2π

∫ 2π

0

Si(w)S∗h(ω)

|Si(ω)S∗h(w)|
ejωτdω (2)

where Si(ω) and Sh(ω) denote the short-time Fourier trans-
forms of si(t) and sh(t), respectively, and where Rn is their
weighted cross correlation. Subsequently, the most “likely”
TDOA τ̂n is extracted as:

τ̂n = argmaxτ Rn(τ) (3)

2.3. Acoustic Source Tracking Based on Estimated
TDOAs

Once the TDOA has been estimated for a number of N ≤(
M
2

)
microphone pairs, acoustic source tracking can be per-

formed with any algorithm from Section 2.1 (e.g., [2, 3, 9]).
In order to do this, we use the following process model for
tracking the azimuth θ and elevation φ of the source:[

θt
φt

]
= f

([
θt−1
φt−1

]
, vt

)
=

[
θt−1 + vt,θ
φt−1 + vt,φ

]
(4)

where vt,θ and vt,φ denote zero-mean Gaussian process noise
with a variance of σ2

θ and σ2
φ, respectively. Similar to the

approaches taken in [2, 3, 6], we use

yt = h

([
θt
φt

]
,wt

)
=

 τ1 (d[θt, φt]) + wt,1
...

τN (d[θt, φt]) + wt,N

 (5)

as measurement model. In this equation, τn (d[θt, φt]) de-
notes the predicted TDOA of the n-th microphone pair,
whereas wt,n is zero-mean Gaussian measurement noise with
a variance of σ2

W . This measurement model is nonlinear, as
the calculation of the predicted TDOAs according to (1) in-
volves evaluating sines and cosines for the direction of arrival
d[θt, φt]. Hence, the tracking should be performed using one
of the approximate solutions in Section 2.1.
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3. TDOA GAUSSIAN MIXTURE MODEL

GCC-based TDOA estimation works well in an environment
that is characterized by low noise and reverberation. How-
ever, as mentioned earlier in Section 1, it breaks down in mod-
erately reverberant conditions where, early reflections and re-
verberation corrupt the GCC function through smearing and
through introduction of secondary peaks.

Interpreting the normalized GCC as a probability distri-
bution of the TDOA, similar as originally proposed in [6]
and first applied in [4] for a steered response power (SRP)
approach [5], allows a probabilistic approach to the problem
of TDOA estimation. Given this interpretation, the maximal
peak of the GCC can be considered to be the maximum esti-
mate. This has been implicitly used in [2, 3]. In this work,
we continue along these lines and propose a probabilistic ap-
proach, which tries to enhance each TDOA by a) approximat-
ing the TDOA pdf by a GMM, as described in Section 3.1, b)
updating the GMM with knowledge that has been obtained in
the tracking stage, as explained in Section 3.2, and c) finally,
estimating the TDOA (Section 3.3).

Besides the multimodality of the GCC function, the
choice of the GMM as approximation of the TDOA pdf is
also motivated by the Gaussianity assumption of the tracking
information, which makes its integration into the TDOA esti-
mation stage easier and more reliable.

3.1. Gaussian Mixture Model

The most popular approach to estimate the maximum like-
lihood parameters of a GMM from a given data is the
Expectation-Maximization (EM) algorithm. Using this ap-
proach to approximate the TDOA pdf by a GMM for each mi-
crophone pair at each time frame t, however, would be com-
putationally expensive. Thus, we use a computationally less
expensive method that provides comparable results to those
obtained with the EM algorithm.

Let Kn
t be the number of GCC peaks of the nth mi-

crophone pair at time t, and let ynt = {τ̂n1 , ..., τ̂nKn
t
} and

wnt = {wn1 , ..., wnKn
t
} = {GCC(τ̂n1 ), ..., GCC(τ̂nKn

t
)} be

the corresponding TDOAs and GCC values, respectively. For
ease of notation, the time index t and the microphone pair in-
dex n are dropped in the rest of paper. Then, we construct the
GMM as follows:

1. Determine the K peaks of the GCC.

2. Determine the K blocks {B1, ..., BK} corresponding
to the different peaks. By block we mean the peak in-
terval, which starts at its left foot and ends at the right
foot (e.g., see Figure 1).

3. Calculate the Gaussian pdf associated to each block.

4. Normalize the weights {w1, ..., wK} (GCC peaks).

The Gaussian pdf N (τ ;µk, σ
2
k) corresponding to the kth

block Bk and its mixture weight ŵk are given by :

µk = τ̂k (6)

σ2
k =

∑
i/τi∈Bk

GCC(τi)(τi − µk)2∑
i/τi∈Bk

GCC(τi)
(7)

ŵk =
wk∑K
i=1 wi

(8)

The statistical properties of the GCC function ensure that one
of the peaks corresponds to the true TDOA. This fact justifies
the choice of the TDOA and the GCC values of the peaks to
be the means and the weights of the GMM, respectively. The
main problem, however, is to find the peak which corresponds
to the direct path. This problem is treated in the next section.

3.2. Updating the Gaussian Mixture Model Using Track-
ing Information

Previous works, though not directly related to the acoustic
source tracking problem, have shown that the use of prior
information about the measurements can efficiently improve
measurement detection [11] (e.g., the “gating” approach).
Along this line, we present in this section an approach for
updating the GMM through use of information that has been
obtained in the tracking stage. This is achieved by (1) calcu-
lating the predicted pdf of the TDOA (Step 2 in Section 2.1) as
it is expected by the tracking algorithm; (2) calculating sim-
ilarity scores between the predicted pdf and each component
in the GMM where the similarity score reflects the probability
that the component generates the true TDOA observation; and
finally, (3) updating the mixture weights of the GMM based
on the calculated similarity scores.

Let gp and gk be the predicted pdf of the TDOA and the
kth component of the GMM, respectively. For calculating
similarity scores, we propose two different similarity mea-
sures (SMs):

SM1(gp, gk) =
1

1 +KLD(gp||gk)
(9)

SM2(gp, gk) =

∫ √
gp(x)gk(x) dx (10)

where KLD(gp||gk) is the Kullback-Leibler Divergence be-
tween the two Gaussians and where the second SM is the
Bhattacharyya Coefficient (BC) [12]. Both have closed form
solutions for Gaussian distributions. After having calculated
the SM for each component of the GMM, we update the
weights before estimating the TDOA. The new weight w̄k of
the kth component is given by

w̄k =
ŵkSM(gp, gk)∑K
i=1 ŵiSM(gp, gi)

(11)

The update step smoothes out the unlikely components
and enhances the ones which are “close” to the predicted
TDOA. This step can be regarded as a “correction” of the
GMM (e.g., see Figure 1).
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3.3. TDOA Estimation

After updating the GMM, the TDOA estimate can be obtained
in two different ways – the maximum estimate from (12) and
the mean estimate from (13):

τmax = arg max
τ

K∑
k=1

w̄kN (τ ;µk, σ
2
k) (12)

τmean =

K∑
k=1

w̄kµk (13)

In any case, the estimated TDOA can be used in an arbi-
trary single observation acoustic source tracking approach. To
construct the observation vector, we first estimate the TDOA
τ̄nt for each microphone pair, n = 1, . . . , N , and then com-
bine these individual estimates to form a joint measurement
yt, with yt = [τ̄1t , ..., τ̄

N
t ].
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Fig. 1. Illustration of the TDOA Gaussian mixture model and
the Gaussian similarity measure (K = 7).

Figure 1 illustrates the efficiency of the proposed method. The
maximal GCC peak corresponds to a TDOA of -9 samples.
Use of the SM, however, alleviates the estimation error and
recovers the true TDOA, which is 8.2 samples.

4. EXPERIMENTS AND RESULTS

4.1. Database and Experimental Setup

In order to evaluate the performance of the proposed algo-
rithm, we performed a set of tracking experiments on the
AV16.3 corpus [7]. In this corpus, real human speakers have
been recorded in a smart meeting room (approximately 30m2

in size) with a 20cm 8-channel circular microphone array.
The sampling rate is 16 KHz and the real mouth position
is known with an error of ≤ 5cm [7]. We present stud-
ies for two different sequences of this corpus: the highly
non-stationary sequence “seq11-1p-0100”, in which a single
speaker is quickly moving in the room; and the relatively

stationary sequence “seq02-1p-0000”, in which a speaker is
moving through 16 predefined locations while uttering one
sentence “One,Two,Three,...” at each of the positions. These
sequences are 32 and 185 seconds in length, respectively. The
average distance of the speaker from the array is 1.18 and
1.53 meters, with a minimum of 0.57 and a maximum of 2.40
(links to the videos can be found in [7]).

The signal is divided into frames of 1024 samples (64ms).
All the GCCs were calculated under use of PHAT [1] weight-
ing. As there is no point in tracking an inactive speaker, we
use a voice activity detector [13] for suppressing observations
during silence frames. As a further precaution, the SM is re-
placed by gating [11] in the first frames and is used only after
a duration T that ensures the true source is tracked.

In order to test the performance, we have combined the
proposed method with 4 different algorithms that have been
proposed as a solution to the acoustic source tracking prob-
lem: (i) the UKF [2] as well as a combination of the UKF
with Gating [11], (ii) the Sequential Importance Resampling
Particle Filter (SIR-PF) [4], which is implemented here as a
TDOA-based approach, (iii) the Multiple Hypothesis Aux-
iliary Particle Filter (MH-PF) approach from [6], and (iv)
the Multiple Hypothesis Gaussian Mixture Filter (MH-GMF)
from [9]. UKF and PF are single observation acoustic source
tracking approaches which use the TDOA estimates from
(12). In case of the MH-PF and MH-GMF the GCC is re-
placed by the updated GMM. The results are presented with
and without the proposed approach using the second SM, i.e.
BC. The use of KLD gives similar results.

4.2. Results and Analysis

Table 1 clearly shows that the integration of prior information
about the TDOA, be it through Gating or through the pro-
posed approach denoted as “SM”, improves the TDOA es-
timation and thereby the tracking performance. The results
also show that the proposed approach improves the perfor-
mance of almost all tracking algorithms, except for the MH-
GMF on sequence “seq11-1p-0100”. This exception is due to
the measurement model Eqn. (5), which assumes the source
is stationary, whereas the speaker in this sequence is quickly
moving. We can also conclude that the use of this approach
is more relevant with single observation tracking algorithms,
where the DOA error is 66% and 73% lower for the UKF
and 46% and 70% lower for the PF. This compares to 17%
and 16% improvement for the MH-PF and to only 4% for the
MH-GMF when it is applied to sequence “seq02-1p-0000”.
The difference in improvement was expected, regarding that
the multiple hypothesis filters propose to overcome the mul-
timodality problem by considering multiple peaks with equal
weights, whereas the SM assigns a likelihood weight to each
Gaussian before estimating the observations and thereby im-
proves the TDOA estimates. We can also notice that, with
SM, the performance of the single observation filters, which
are computationally more efficient, is close to the perfor-
mance of the multiple observations filters. This makes the
former more attractive.
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Sequence “seq11-1p-0100” / quickly moving
tracking root mean square error

algorithm azimuth elevation DOA TDOA
UKF 5.56◦ 15.98◦ 16.92◦ 2.01

UKF+Gating 4.17◦ 7.12◦ 8.24◦ 1.05
UKF+SM 2.97◦ 4.92◦ 5.74◦ 0.64

SIR-PF 4.80◦ 10.33◦ 11.40◦ 2.01
SIR-PF+SM 3.29◦ 5.12◦ 6.09◦ 0.64

MH-PF 3.72◦ 5.94◦ 7.00◦ —
MH-PF+SM 3.25◦ 4.81◦ 5.80◦ —
MH-GMF 2.85◦ 4.25◦ 5.11◦ —

MH-GMF+SM 3.21◦ 5.070◦ 5.99◦ —

Sequence “seq11-1p-0100” / quickly moving
tracking root mean square error

algorithm azimuth elevation DOA TDOA
UKF 5.56◦ 15.98◦ 16.92◦ 2.01

UKF+Gating 4.17◦ 7.12◦ 8.24◦ 1.05
UKF+SM 2.97◦ 4.92◦ 5.74◦ 0.64

SIR-PF 4.80◦ 10.33◦ 11.40◦ 2.01
SIR-PF+SM 3.29◦ 5.12◦ 6.09◦ 0.64

MH-PF 3.72◦ 5.94◦ 7.00◦ —
MH-PF+SM 3.25◦ 4.81◦ 5.80◦ —
MH-GMF 2.85◦ 4.25◦ 5.11◦ —

MH-GMF+SM 3.21◦ 5.070◦ 5.99◦ —

Sequence “seq02-1p-0000” / more stationary
tracking root mean square error

algorithm azimuth elevation DOA TDOA
UKF 8.15◦ 20.23◦ 21.81◦ 2.33

UKF+Gating 2.71◦ 8.14◦ 8.58◦ 0.99
UKF+SM 2.83◦ 5.11◦ 5.84◦ 0.64

SIR-PF 7.54◦ 19.57◦ 20.98◦ 2.33
SIR-PF+SM 2.97◦ 5.46◦ 6.20◦ 0.62

MH-PF 3.99◦ 6.44◦ 7.58◦ —
MH-PF+SM 3.32◦ 5.42◦ 6.36◦ —
MH-GMF 2.71◦ 4.07◦ 4.89◦ —

MH-GMF+SM 2.60◦ 3.86◦ 4.65◦ —

Sequence “seq02-1p-0000” / more stationary
tracking root mean square error

algorithm azimuth elevation DOA TDOA
UKF 8.15◦ 20.23◦ 21.81◦ 2.33

UKF+Gating 2.71◦ 8.14◦ 8.58◦ 0.99
UKF+SM 2.83◦ 5.11◦ 5.84◦ 0.64

SIR-PF 7.54◦ 19.57◦ 20.98◦ 2.33
SIR-PF+SM 2.97◦ 5.46◦ 6.20◦ 0.62

MH-PF 3.99◦ 6.44◦ 7.58◦ —
MH-PF+SM 3.32◦ 5.42◦ 6.36◦ —
MH-GMF 2.71◦ 4.07◦ 4.89◦ —

MH-GMF+SM 2.60◦ 3.86◦ 4.65◦ —

Table 1. Average root mean square error (RMSE), with and without Similarity Measure (SM), in azimuth, elevation and
direction of arrival, with respect to the center of the array. The last column shows the average RMSE of the TDOA (in samples)
of 18 microphone pairs. This RMSE is calculated only for the single observation filters.

Table 1 also shows that the reason behind the improve-
ment is the reduction of the TDOA root means square error,
which is around 0.63. This value is compared to the inherent
0.5 samples precision error due to the GCC method. Although
this could be slightly improved through GCC interpolation,
the gain we obtained from this was negligible.

5. CONCLUSIONS

We presented a Gaussian mixture model of the TDOA which
couples the detection and tracking stages to enhance TDOA
estimates. More specifically, our study shows that the pro-
posed model can efficiently be used to improve the perfor-
mance of acoustic source tracking algorithms, as it reduces
the problem of erroneous TDOA estimates by incorporating
the prior information given by the predicted pdf of the TDOA.
In this work, our focus was on single source tracking prob-
lem. Future work will investigate the generalization of this
approach to multiple source tracking problem.
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