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ABSTRACT

Through-the-Wall Radar Imaging (TWRI) is an emerging
technology, desirable for a variety of military and civilian
applications. Some of these applications require the ability
to make a rapid decision on the contents of a target scene,
rather than reconstruct it perfectly. In this work, we address
this problem by modifying the smashed filter proposed by
Davenport et al., which is based on compressive sensing (CS)
theory. We introduce two compressive classification meth-
ods, which allow for an efficient hardware implementation as
well as deliver accurate classification results in the considered
scenarios using only a fraction of the available data.

Index Terms— Through-the-Wall, radar imaging, com-
pressive sensing, compressive classification

1. INTRODUCTION

Through-the-Wall Radar Imaging (TWRI) is a very promis-
ing field of research with a variety of applications including
military, police, and fire brigade missions as well as search
and rescue in the aftermath of natural disasters [1, 2]. By de-
livering information about obscured areas, which cannot be
observed by other means, it provides a way to estimate the
layout of an observed scene as well as localize, identify, and
classify possible obscured targets.

Conventional TWRI systems usually form an image from
the gathered data and apply target detection before classify-
ing on the obtained features [3, 4]. Compressive sensing (CS)
has been shown to tremendously decrease the amount of nec-
essary data for high-resolution TWRI reconstruction [5]. As-
pects in sparse reconstruction of extended targets have been
studied in [6], however, it is unclear if these images can be
used for classification as the image statistics differ strongly
from beamformed images. Apart from that, there are many
applications, such as search and rescue missions, in which it
is crucial to rapidly decide on the scene under observation
rather than reconstruct its layout perfectly. This work seeks
to provide a solution to this problem by bringing CS theory
to the classification domain. Our aim is to achieve reliable
classification using only a small amount of measurements, for

which no imaging would be possible. To this end, we will re-
sort to the smashed filter, which was developed by Davenport
et al. in [7]. This algorithm offers a way to apply compressive
classification (CC) in image target classification by using a
maximum likelihood classifier (MLC) directly on compressed
measurements. It is even able to deal with arbitrary perturba-
tions, such as a shift or rotation, by prepending a maximum
likelihood estimator (MLE).

We propose two adaptations of the smashed filter for the
application in TWRI, namely Fixed Frequency Classification
(FFC) and Fixed Antenna Element Classification (FAEC),
which randomly combine measurements in the space or fre-
quency domain, respectively, before applying the smashed
filter. Both methods can be efficiently implemented and de-
liver close to perfect classification in the considered scenarios
using less than 0.1 % of the available data.

In Sections 2 and 3, we will briefly revisit the smashed
filter and introduce the TWRI signal model used in our ex-
periments, respectively. In Section 4 FFC and FAEC are pre-
sented. Section 5 compares their performance to a standard
method in a simulated as well as a real TWRI scenario.

2. THE SMASHED FILTER

The smashed filter is a two-step algorithm, consisting of a
MLE, i.e. a least-squares estimator (LSE) in the case of ad-
ditive white Gaussian noise (AGWN), followed by a MLC.
It was initially developed to classify compressed images of
objects that are taken using a single-pixel camera, a detailed
description of which can be found in [8].

Compressive measurements of a signal x ∈ RN in a noisy
image can mathematically be expressed as

y = Φ(x+w), (1)

where Φ ∈ RM×N ,M ≤ N is a pseudorandom orthoprojec-
tor and w denotes AWGN with variance σ2 [7]. Note, that
Φ can either be filled with zeros and ones, which corresponds
directly to the single-pixel camera imaging process, or with
±1.

For each class Ci, i = 1, ..., P, containing the signal si,
the smashed filter requires access to a set of training data,
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i.e. a manifold Mi, containing all possible transformations
x = fi(θ, si) of the signal, parametrized by θ. Note that
the function fi could represent scaling, rotation, or transla-
tion of the object or the whole scene in an imaging scenario.
If fi is unknown, we can resort to a data-based representation
using training data.

The smashed filter [7] first estimates the closest point
on each manifold Mi to the observed signal y using a LSE,
which is equal to finding the most probable transformation
for each class. Mathematically, this is given by

θ̂i = arg min
θ∈Θi

‖y −Φfi(θ, si)‖22. (2)

In the second step, MLC selects the manifold and thereby the
class for which the distance between y and the closest point
on the manifold is minimal, as

C(y) = arg max
i=1,...,P

p(y|θ̂i, Ci), (3)

where the likelihood p(y|θ̂i, Ci) is approximated by

p(y|θ̂i, Ci) =
1

(2πσ)M/2
e−

1
2σ ‖y−Φfi(θ̂i,si)‖22 . (4)

Note that this expression holds exactly, if Φ is an orthopro-
jector [7].

3. THROUGH-THE-WALL RADAR IMAGING
SIGNAL MODEL

Consider a monostatic uniform linear array of A antenna el-
ements ta placed at a distance zoff from the observed target
area. The stepped-frequency approach is used to synthesize
an ultrawideband (UWB) pulse. This is done by transmitting
short continuous wave segments at U different frequencies fu
for each antenna element, exploiting the Fourier equivalency
in the process [1].

In the frequency domain, the received signal at array ele-
ment ta and frequency fu can be regarded as a superposition
of P point targets [1]:

r[u, a] =

P−1∑
p=0

σpe
−j2πfuτpa , (5)

where σp denotes the target reflectivity of target p and τpa is
the two-way propagation delay between target p and antenna
element ta. If a wall is present, the EM waves are refracted
according to Snell’s law and τpa has to be calculated accord-
ingly. In the absence of a wall, however, τpa can simply be
computed using the Euclidean distance dpa between target p
and antenna element a:

τpa =
2 · dpa
c0

(6)

where c0 denotes the speed of light.
Eventually, we obtain an U×Ameasurement matrix, rep-

resenting the target area in the frequency-space domain. Con-
ventional imaging and classification algorithms would apply
beamforming, for example, employing Direct Frequency Do-
main Image Formation [9]. Since we are not interested in the
exact layout of the target scene and, thus, want to skip the
imaging step, the smashed filter shall be applied directly to
the N = U × A measurements. As these do not correspond
to actual pixel locations, the algorithm has to be adapted in
order to work in a TWRI scenario. In the following, we will
explore two such adaptations.

4. COMPRESSIVE CLASSIFICATION FOR
THROUGH-THE-WALL RADAR IMAGING

As mentioned earlier, many TWRI applications require rapid
classification decisions on the scene under observation. Due
to portability reasons, it is, furthermore, desirable to make re-
liable decisions with as few measurements as possible. FFC
and FAEC are two approaches at bringing the smashed filter
to the classification domain. By linearly combining random
measurements in the space and frequency domain, respec-
tively, they form compressive measurement vectors to which
the smashed filter is applied.

4.1. Fixed Frequency Classification

The first and most intuitive adaptation of the smashed fil-
ter is FFC. For each compressive measurement a single fre-
quency fu is picked at random and the received signals are
linearly combined according to the pseudorandom measure-
ment matrix. Let um be a random sampling index with um ∈
[1, ..., U ]. In analogy to Eq. (1), FFC can be mathematically
expressed as

ym = φTmxm,

xm = (r[um, 0], r[um, 1], ..., r[um, A− 1])T
(7)

where φm is an A × 1 vector. We only consider antipodal
patterns, which corresponds to simply inverting some of the
received signals before the summing step, as we found them
to generally yield better results. Fig. 1 shows the concept of
taking one ofM compressive measurements using FFC. Note
that white elements are zero or simply unconsidered, while
grey elements are valued with +1 and black ones with −1.

Clearly, considering only ±1 as elements of the measure-
ment matrix, which corresponds to a 0◦/180◦ phase shift, al-
lows for a simple hardware implementation. Therefore, a sin-
gle radio frequency frontend would be sufficient, assuming
access to a real aperture antenna.

FFC can be further simplified by considering the same
frequency for every compressive measurement. Although this
leads to the total loss of downrange resolution, it can seriously
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Fig. 1. Fixed Frequency Classification, taking 1 of M com-
pressive measurements

decrease hardware costs since a fixed frequency transceiver
setup can be employed.

4.2. Fixed Antenna Element Classification

Considering only one frequency but all antenna elements is
not necessarily cost-effective, as additional frequencies are
cheap, while additional sensors are usually expensive. There-
fore, we introduce FAEC, which randomly chooses an an-
tenna element ta and linearly combines the values at that el-
ement for each frequency to obtain one compressive mea-
surement. Let am be a random sampling index with am ∈
[1, ..., A]. In matrix notation, FAEC can be expressed as

ym = φTmxm,

xm = (r[0, am], r[1, am], ..., r[U − 1, am])T
(8)

where φm is an U × 1 vector. Using an antipodal pattern
again corresponds to inverting some values before the sum-
ming step. The concept of taking one ofM compressive mea-
surements using FAEC is depicted in Fig. 2.

FAEC, too, can be further simplified by choosing the same
antenna element for every compressive measurement. This al-
lows for a natural and efficient implementation of the smashed
filter in real life. If we design a waveform [10] with the appro-
priate power spectral density to reflect the necessary frequen-
cies, only one pulse has to be transmitted. However, the con-
sideration of only one sensor leads to the total loss of cross-
range resolution. In other words, there will be ambiguities
between shifted objects, which are located at the same radius
from ta, as they produce the same propagation delay τpa.

4.3. Template Matching

Template Matching (TM) is the simplest non-compressive al-
ternative to FFC and FAEC, which we will use to assess the
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Fig. 2. Fixed Antenna Element Classification, taking 1 of M
measurements

performance of these two methods. In this case, the mea-
surement vector y is simply composed ofM non-compressive
measurements, which are randomly picked from the original
U × A measurement matrix, which we introduced in Section
3. Subsequently, the smashed filter is applied to y as previ-
ously described.

5. EXPERIMENTAL RESULTS

In the following experiments we evaluate the performance of
FFC, FAEC and TM in simulated as well as real TWRI sce-
narios. To this end, we will estimate the classification rate
using a Monte Carlo simulation. Hence, every experiment
is executed 1000 times for different values of M and correct
classifications are counted. The classification rate, thus, de-
notes the number of correct classifications in percent. Apart
from that, we employ leave-one-out testing, i.e. randomly re-
move one entry from the training data and use it as the test
class in each Monte Carlo run.
For simplicity, we only consider a single class to be present
in the observed scene. While the transition to multi-class sce-
narios is straightforward, the classification process becomes
increasingly more complex with each additional class. In or-
der to test every possible combination of classes, we would
need to have access to training data for all possible constella-
tions of arbitrarily and individually transformed classes.

5.1. Simulated Data

5.1.1. Simulation Setup

Consider a square target area with a side length of approx-
imately 3.6 m, mapped to a grid of 117 × 117 pixels. The
linear transceiver antenna array consists of A = 57 antenna
elements—equally spaced at 2.2 cm—and is placed at a dis-
tance zoff = 1.05 m from the target area. At each element
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(a) FFC, σ2 = 0.001
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(c) FFC, σ2 = 0.1
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(e) FFC, real data
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(b) FAEC, σ2 = 0.001
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(d) FAEC, σ2 = 0.1
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Fig. 3. Classification rates for FFC, FAEC and TM using simulated data under different SNRs (a-d) and real data (e,f)

Class No./No. of targets Pos. [cross-,downrange] in m
1 [0, 3.5]
2 [-1.25, 3.0] [1.25, 3.0]
3 [-0.75, 2.0] [0, 5.0] [0.75, 2.0]

Table 1. Three point target layouts as simulation classes

position, U = 801 measurements are generated, representing
multiple frequency steps between 700 MHz and 3.1 GHz.

Table 1 details the point target layouts, which will serve
as classes in the following experiments. The training data is
generated by successively shifting each point target layout by
1 cm in cross- or downrange. The maximum shift is restricted
to 1 m. At this point, we assume free space propagation, i.e.
no wall is present.

5.1.2. Results on Simulated Data

A comparison of using FFC, FAEC and TM with different
levels of additive noise is given in Fig. 3 (a-d).

Considering a high SNR, i.e. σ2 = 0.001, TM leads to a
very good classification rate, reaching 100 % for M ≥ 20,
which corresponds to 0.04 % of the available data. FFC and
FAEC yield even better results, reaching 100 % already at

about M = 10, i.e. using 0.02 % of the data. In the low SNR
regime, i.e. σ2 = 0.1, the performance of all three algorithms
degrades. While TM needs an M > 70, i.e. 0.15 % of the
data, to achieve perfect classification, FFC and FAEC only
require M ≥ 42 and M ≥ 30, i.e. 0.09 % and 0.06 % of the
data, respectively. If 90% correct classification is sufficient,
we can resort to the simplified version of FFC, which uses
only one frequency, and thereby decrease hardware costs. All
in all, compressive classification outperforms TM in terms of
the amount of necessary data, especially in the face of a low
SNR.

5.2. Real Data

5.2.1. Experimental Setup

The real measurement setup is similar to the one assumed in
the model for simulated data. The 3.6 m× 3.6 m target scene
is set up in an anechoic chamber, the floor of which is not
covered by anechoic material. Hence, reflections off the floor
will lead to multipath propagation [1]. In contrast to the simu-
lation setup, the transceiving antenna consists of a 57×57 el-
ement planar array. Essentially, this gives us 57 complete sets
of measurements for different elevation layers. A horn an-
tenna is iteratively moved by 2.2 cm in crossrange and height,
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taking measurements for all 801 frequencies at each point. A
concrete wall with a thickness of d = 14.3 cm and a relative
permittivity of ε = 7.6632 is placed at a standoff-distance
zoff = 1.05 m from the antenna. A detailed description of the
setup can be found in [1].

We consider TWRI measurements of 4 single objects—a
metallic dihedral, a metallic trihedral, a metallic sphere, and
a gallon jug of saltwater—placed on a 1.2 m high foam col-
umn, located at about 1.9 m downrange. They will serve as
classes in the following experiments. For simplicity, we will
only consider measurements that were taken using horizontal
transmitter and receiver polarization.

5.2.2. Results with Real Data

We do not have access to measurements of shifted objects
and, thus, we cannot translate the experiments from the previ-
ous section to a real TWRI environment. The 57 available
sets of measurements, corresponding to different measure-
ment heights, however, represent some kind of shift, too, only
this time the antenna array is shifted instead of the object.
Therefore, we will use them as training data for each class.

A comparison of using FFC, FAEC and TM is given in
Fig. 3 (e,f). All three methods lead to a similar classification
rate, reaching 100 % at about M = 15, which corresponds
to 0.03 % of the available data. The simplified approaches of
FFC and FAEC even yield worse results, as their classification
rate saturates slightly below 100 %. Obviously, compressive
classification does not offer much benefits in this scenario.

6. CONCLUSION

Two different approaches to modifying the smashed filter for
the application in TWRI were presented. They were em-
ployed to classify shifted targets in a simulated environment
as well as unshifted targets recorded by a shifted antenna in a
radar imaging lab. Their performance was evaluated in terms
of classification rate and compared to a non-compressive
method. While TM already yields excellent results, the com-
pressive methods are able to further reduce the number of
measurements. For low SNR, FAEC is the best choice since
its performance stays almost constant. FFC and FAEC cannot
improve the results of TM in the real data experiment, with
all three methods performing equally well.

However, we have to take into account that the two ex-
periments are not perfectly comparable for various reasons.
First of all, we consider shifted targets in the simulated case,
compared to a shifted antenna in the real setup. Second, the
simulation classes are composed of 1 to 3 point targets with
the same radar signature, compared to a single target with a
different radar signature for each class. Third, the simulated
environment lacks a wall and is assumed to be affected by
AWGN noise only, while the measurements taken in the radar
lab are subject to a huge wall-echo and the noise is not neces-
sarily white. Last, Φ cannot be considered an orthoprojector

in a real radar scenario. Due to the unknown effect of these
differences, it is not surprising that the real data results differ
from the simulation one.

In order to improve the performance of FFC and FAEC
even further, both methods can be extended to consider
all four possible combinations of horizontal and vertical
transceiver polarizations. That way we can take advantage
of the fact that some classes might differ more when viewed
from a certain angle.
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