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leonardo.duarte@fca.unicamp.br, ricardo.suyama@ufabc.edu.br, attux@dca.fee.unicamp.br

romano@dmo.fee.unicamp.br, christian.jutten@gipsa-lab.grenoble-inp.fr

ABSTRACT

In this work, we address the problem of compensating a non-

linear memoryless system in a blind fashion, i.e., without con-

sidering a set of training points. Our proposal works with

the assumption that the input signal admits a sparse repre-

sentation in a transformed domain that should be known in

advance. By assuming that the nonlinear distortion function

makes the observed signal less sparse (this is observed in fre-

quency transforms), the proposed method aims at estimating

the original signal via a sparsity recovery procedure. Our ap-

proach is based on an approximation of the ℓ0-norm and on

the use of polynomial functions as compensating structures.

In order to assess the viability of the developed method, we

perform a representative set of experiments on synthetic data.

Index Terms— Blind compensation, nonlinear distortion,

sparse signals.

1. INTRODUCTION

Nonlinear distortions arise in many applications. In some

cases, this problem stems from the fact that the sensors used

to acquire the desired signal are based on nonlinear transducer

mechanisms. For instance, in electrochemical sensors, the

conversion of chemical energy into electrical energy is clearly

a nonlinear process [1]. Another common source of nonlin-

ear distortion can be found in the amplifying stages that fol-

low the signal acquisition. This situation often arises in audio

signal processing and satellite communications [2].

When a set of training points is available, it is possible

to counterbalance a nonlinear distortion either by adjusting a

compensating function in a supervised fashion [3] or by car-

rying out an identification of the nonlinear function [4]. Con-

versely, when it is impossible or demanding to obtain training

points, one must consider consider a blind (or unsupervised)

framework. The resulting problem in this case is challenging,

and can be solved only if additional prior information is taken

into account.

∗C. Jutten is also with Institut Universitaire de France.

In order to develop a blind framework for dealing with

nonlinear distortions, we introduce in this work a novel ap-

proach which is based on the assumption that the input signal

admits a sparse representation [5]. The cornerstone of our

idea is the assumption that, as a consequence of the nonlin-

ear distortion, the observed signal is usually less sparse than

the original one. This is observed, for instance, in frequency

transforms. Thus, we propose to adjust a compensating func-

tion so that the estimated input signal be as sparse as possible.

To implement our proposal, we consider an approximation of

the ℓ0-norm1 as a measure of sparsity, and employ compen-

sating devices parametrized by polynomial functions.

In a certain sense, this proposal can be regarded as a gen-

eralization of the idea firstly introduced by Landau and Mi-

ranker [6] and recently adapted to unsupervised scenarios [7,

8]. Indeed, the main assumption considered in these works is

that the input signal is bandlimited. Since a nonlinear func-

tion tends to spread the spectrum of the observed signal, the

basic idea in this case is to restore a bandlimited signal. Note

that assuming the signal to be bandlimited is somewhat equiv-

alent to considering that the desired signal presents a special

pattern of sparsity — in fact, such signals can be classified as

block-sparse. In our proposal, though, the input signal does

not necessarily have to present a block-sparse character.

The paper is organized as follows. In Section 2, we intro-

duce the problem of blind compensation of nonlinear func-

tions. Then, in Section 3, we show how nonlinear distortions

can be mitigated via a sparsity minimization procedure. In

Section 4, we provide some numerical experiments to attest

the validity of our proposal. Finally, our conclusions are pre-

sented in Section 5.

2. PROBLEM STATEMENT

Let the vector s ∈ R
N represent an one-dimensional discrete,

where N is the sample size. The element-wise function f :
R

N
� R

N models the effects introduced on s by a nonlinear

1Strictly speaking, the ℓ0-norm is not a mathematical norm [5]. However,

we keep this nomenclature since the term “ℓ0-norm” is commonly used.
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memoryless system, being the i-th element of the observed

signal, x ∈ R
N , given by

xi = f(si). (1)

In our notation, the overall mapping is denoted by x = f(s).
The problem addressed in this work is to estimate s in an un-

supervised fashion, that is, based only on the observed signal

x. As is the rule in unsupervised methods, scaling ambigui-

ties are accepted, so scaled versions of s are also considered

perfect solutions to the problem.

In order to obtain estimates of the input signal, we con-

sider a compensating function g : RN
� R

N that should be

adjusted so y = g(x) be as close as possible to s. We assume

that both f and g are monotonic functions with non-vanishing

derivative. Otherwise, the problem becomes very difficult to

solve, requiring strong prior information.

3. BLIND COMPENSATION OF NONLINEAR

DISTORTIONS VIA SPARSITY RECOVERY

3.1. The basic idea

In order to introduce the motivations of our proposal, let us

present an example. Consider the discrete signal s, illustrated

in the left side of Figure 1. This signal can be sparsely repre-

sented in a transformed domain, being the forward transform

represented by the orthogonal matrix Φ, so that sc = Φs cor-

responds to the transform coefficients. In our example, we are

considering the discrete cosine transform (DCT).
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Fig. 1. Effects of a cubic root function on the DCT of the

observations. The input and output signals, and their DCTs,

are shown in the left and right sides of the figure, respectively.

After imposing the input signal to a cubic root function,

i.e., xi = f(si), we obtained the signal depicted in the right

side of Figure 1. The key point here is that the DCT of x is

clearly less sparse than the one of the input signal. This is

analogous to the spectral spreading phenomenon that arises

when bandlimited signals are submitted to nonlinear func-

tions [6, 7]. Therefore, a natural criterion to adjust the com-

pensating function g is to recovery a sparse signal. We discuss

in the sequel how this can be carried out in practice.

3.2. Implementation aspects

A first point that we must deal with to implement our idea

concerns the compensating nonlinear function g. As men-

tioned before, this function must be monotonic. Otherwise,

there is a risk of having a compensating function able to gen-

erate null elements in the transformed domain.

Another important issue here is to choose a compensating

structure that, without violating the constraint of strict mono-

tonicity, be as flexible as possible. In this spirit, we consider

polynomial functions, so the estimated signal is given by:

yi =

Np
∑

j=1

wjx
2i−1

i . (2)

Note that, to ensure monotonicity, only the odd terms are con-

sidered. Moreover, a non-negativeness constraint must be im-

posed to the coefficients wj . In vector notation, the outputs of

the polynomial compensating are given by

y = XTw, (3)

where

X =











x1 x2 · · · xN

x3

1
x3

2
· · · x3

N
...

...
. . .

...

x
2Np−1

1
x
2Np−1

2
· · · x

2Np−1

N











. (4)

Having defined the structure of the compensating func-

tion, it is necessary to choose a sparsity criterion to guide the

adaptation of wj . A possible choice in this case is to min-

imize the ℓ0-norm of yc = Φy [5], denoted ||yc||0, which

simply counts the number of non-null elements of the signal

in the transformed domain characterized by Φ — this matrix

could be, for instance, the DCT matrix or other matrix associ-

ated with other frequency transform. In a practical situation,

though, the use of a criterion based on the ℓ0-norm is lim-

ited, because the sparse signal often presents many elements

that are close to zero, but not necessarily null. Therefore, one

must consider practical approximations of the ℓ0-norm. In

the present work, we make use of the smoothed version of the

ℓ0-norm [9], which, for a signal z of size N , is given by:

Sℓ0(z) = N −
N
∑

i=1

k(zi, σ), (5)

where k(zi, σ) is Gaussian kernel of zero mean and standard

deviation σ. Therefore, such measure approaches to the ℓ0-

norm as σ tends to zero. The definition of σ should be done
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based on the observation of how close to zero the low-energy

elements of z are.

Based on the elements described so far, our idea can be

implemented by the following optimization problem:

minimize
w

Sℓ0(yc) = Sℓ0(ΦXTw)

subject to wTXXTw = 1

wi ≥ 0, i = 1, . . . , Np.

(6)

As discussed earlier, the inequality constraints are required

in order that monotonic compensating functions be obtained.

The equality constraint is set to avoid trivial solutions, in

which all the elements of yc are null or very close to zero —

note that such a constraint corresponds to simply fixing the

ℓ2-norm of y to one.

The problem described above is an example of a non-

linear programming problem with equality and inequality

constraints. There are many techniques to solve it. In the

present work, this problem is tackled by an active-set algo-

rithm [10] implemented by the function fmincon, available in

the sofware Matlab.

3.3. Theoretical aspects

A very important question concerns the conditions for which

the proposed idea is valid. To illustrate this point, we here

provide some theoretical elements by considering a simple

situation. Our analysis is based on the ℓ0-norm.

Let us assume that the global mapping between the input

signal and the estimated one, y = g(f(s)), can be represented

by y = βs + γh(s), where β ∈ R
∗, γ ∈ R. This is the

case, for instance, when the distorting function is given by

xi = 3
√
si, and the compensating function by yi = βx3

i +γxi.

In this situation, the residual function h is given by h = 3
√
si.

The implementation of our idea is achieved by maxi-

mizing the sparsity of yc = Φy, which, in our analysis,

corresponds to minimizing ||yc||0. In the sequel, we search

for a sufficient condition assuring that the minimization of

||yc||0 necessarily leads to a perfect compensation, which

corresponds to γ = 0.

Firstly, let us represent yc as follows

yc = Φ(βs+ αh(s)) = βsc + γΦh(s). (7)

Although the ℓ0-norm is not a true norm, it satisfies the tri-

angle inequality, and, consequently, the reverse triangle in-

equality. Moreover, the ℓ0-norm is scale invariant, and, thus,

||βsc||0 = ||sc||0. With these observations in mind, the fol-

lowing lower bound is obtained:

||yc||0 ≥
∣

∣

∣
||sc||0 − ||γΦh(s)||0

∣

∣

∣
. (8)

Let ||sc||0 = K and ||Φh(s)||0 = L. When γ 6= 0, one

has ||γΦh(s)||0 = ||Φh(s)||0 = L and, thus,

||yc||0 ≥
∣

∣

∣
K − L

∣

∣

∣
. (9)

The key point here is that if K < L/2, then, from Equa-

tion (9), it asserts that ||yc||0 > K. Conversely, if γ = 0
(perfect compensation), then ||yc||0 = K. To sum up, the

validity of our proposal is assured if the nonlinear function h
decreases the sparsity of y by, at least, a factor of two.

4. RESULTS

We consider a set of experiments in order to assess the per-

formance of our proposal. In our tests, the input signal was

generated as follows:

s = Φsc = Φ(scS + αr), (10)

where scS correspond to realizations of a Bernoulli-Gaussian

process, i.e., each element of scS has a probability P of being

non-zero, and, when active, it is obtained from a zero-mean

Gaussian distribution of unity variance. The elements of r are

also obtained from a standard Gaussian distribution. This vec-

tor, which is weighted by the coefficient α, is used to model

the small residual energy typical of practical sparse signals.

Therefore, when α = 0 and P is small, sc becomes a sparse

signal in the sense of the ℓ0-norm. Finally, in our tests, we

consider that Φ corresponds to the DCT matrix. Note, how-

ever, that our approach is valid for other transformed domains

for which the nonlinear distortion decreases the sparsity of the

original signal, as discussed in Section 3.3.

In some tests, we consider a noisy generative model, in

which the observation is given by:

x = f(s) + n, (11)

where n follows a Gaussian distribution. Finally, as per-

formance index, we adopted the signal-to-interference ratio

(SIR), which is given by:

SIR = 10 log
(

sT s
)

− 10 log
(

(s− y∗)T (s− y∗)
)

,

where y∗ denotes the recovered signal after performing a nor-

malization2 with respect to s. This normalization is necessary,

since we admit scale ambiguities.

4.1. Case in which perfect inversion is possible

Let us first consider the case in which the perfect compen-

sation of the distorting function is possible. In this context,

we address the compensation of f(si) = 3
√
si via the poly-

nomial function (2). The sparse signal was generated accord-

ing (10), considering P = 0.2, α = 0 (ideal sparse signal),

and N = 1000 samples.

The effect of the nonlinear distortion can be observed in

Figure 2(a), which shows the mapping between si and xi. We

applied the proposed approach considering a polynomial of

2This normalization is given by y
∗ = ky, where k = argmink∗ (s −

k∗y)T (s− k∗y).
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degree 7, i.e., Np = 4 (see Equation (2)), and σ = 0.01. By

observing Figure 2(b), which shows the mapping between si
and yi, one can readily note that our proposal led to a perfect

compensation of the nonlinear distortion in this case.
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(a) Joint plot si × xi.
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(b) Joint plot si × yi obtained by

our proposal.

Fig. 2. Compensation when a perfect inversion is possible.

4.2. Case in which perfect inversion is not possible

Although the experiment presented in the last section is very

useful in illustrating the performance of our approach, it is not

always possible to achieve a perfect compensation in practi-

cal situations. For instance, we here consider a new situation

in which f(si) = tanh(3si); N = 1000 samples of the input

signal was generated considering P = 0.2 and α = 0. In Fig-

ure 3(a), the nonlinear distortion is illustrated by the resulting

mapping between si and xi.
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(a) Joint plot si × xi.
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(b) Joint plot si × yi obtained

by our proposal.
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(c) Joint plot si × yi obtained

by a supervised approach.

Fig. 3. Case in which a perfect inversion is not possible.

In this situation, we tested our method considering a poly-

nomial of degree 9 (Np = 5), and σ = 0.1 — we observed

very close results considering other values of σ in the range

[0.001, 0.1]. As can be observed in Figure 3(b), our method

was able to mitigate the effects of the nonlinear distortion;

this is specially clear for high amplitudes. Concerning the

signal-to-interference ratio, the proposal increased the origi-

nal value of SIR= 9.4dB obtained between the input and the

observed signals, to SIR= 17.1dB. For matter of compari-

son, we also considered a supervised approach, in which the

polynomial coefficients were adjusted in order to minimize

the mean-squared error (MSE) between the input signal s and

the estimated signal y. The obtained input signal-estimated

signal mapping is shown in Figure 3(c). Note that, as in the

result obtained by our approach, there is still a residual non-

linear distortion (SIR= 17.4dB). This reveals that the SIR

obtained with the proposed method was actually very close to

the structural limit inherent to the chosen nonlinear compen-

sating device, thus attesting that an expressive performance

level was reached.

4.2.1. Influence of residual elements

So far, we have considered that the input signal is perfectly

sparse, having many null elements — this situation corre-

sponds to assume α = 0 in the signal model described in (10).

However, as we mentioned before, actual sparse signals con-

tain small coefficients that are not necessarily zero. Motivated

by this observation, we here conduct an experiment to analyze

the effects of these residual elements on the performance of

our proposal. To accomplish this task, we performed a set of

simulations in which the parameter α were varied from 0 to

1. In these tests, we considered Np = 4 and the following

different bandwidths: σ = 0.1 and σ = 0.01. The nonlinear

distortion was set f(si) = tanh(1.5si) and N = 1000 sam-

ples of the input signal were generated considering P = 0.2
— in this case, we performed a variance normalization of the

input signal to obtain fair comparisons between different val-

ues of α.

As can be seen in Figure 4, which shows the average SIR

obtained considering 100 trials for each α, the performance of

the proposed approach becomes worse as α increases. This is

expected, since the input signal tends to be less sparse as α
increases, violating the basic assumption underlying our pro-

posal. Another interesting point here is the influence of σ. A

higher value of σ, in this case, leads to a better performance

as α increases. Conversely, for α close to zero, one can note

that defining a smaller σ leads to a better performance, very

close, in fact, to that associated with the supervised solution.

Finally, note that, as expected, the performance of the super-

vised solution does not depend on the degree of sparsity of

the input signal.

4.2.2. Performance in the presence of noise

A last experiment is performed with the aim of investigating

the impact of noise on the proposed method. We consider the

same scenario of the first experiment described in the present
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Fig. 4. Influence of α on the compensation.

section (N = 1000, P = 0.2, α = 0, Np = 5 and nonlin-

ear function f(si) = tanh(3si)). Noise was added according

model (11). In Figure 5, we plot the evolution of the SIR as

the signal-to-noise ratio (SNR) increases — each point cor-

responds to the average obtained in 100 trials. A first point

that should be stressed here is that our proposal (with both

σ = 0.1 and σ = 0.01) provided SIRs very close to the ones

obtained by the MSE-based supervised solution. It is also in-

teresting to stress the effects of the noise, which in nonlinear

systems can be very harmful. In this example, for instance,

we note a rapid performance degradation for SNRs smaller

than approximately 30dB.
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Fig. 5. Influence of noise on the compensation.

5. CONCLUSIONS

In this work, we proposed a new framework for blindly com-

pensating nonlinear distortions. The groundwork of our pro-

posal is the observation that, after applying a nonlinearity, the

sparsity of the input signal in a given frequency transformed

domain is usually lost. Therefore, our approach aims at adapt-

ing a compensating function by maximizing a sparsity mea-

sure, which in our work, was obtained from an approximation

of the ℓ0-norm. The viability of our proposal was illustrated

by means of a set of experiments considering synthetic data.

There are several points that should be addressed in future

works. A first one concerns the derivation of precise condi-

tions indicating when the proposed idea is valid. Although

we provided some elements considering a simple scenario, a

thorough investigation on this challenging subject would be

quite helpful. Another topics that deserve further investiga-

tion are: i) the utilization of criteria built on other measures

of sparsity, and ii) a study on more flexible structures (such

as splines and monotonic neural networks) to be used in the

compensating device. Finally, we intend to address the ap-

plication of our approach to real-word data. We are currently

testing it to process data acquired by chemical sensor arrays.
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