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ABSTRACT
The Empirical Mode Decomposition (EMD) is known to be a pow-
erful tool adapted to the decomposition of a signal into a collection
of intrinsic mode functions (IMF). A key procedure in the extraction
of the IMFs is the sifting process whose main drawback is to de-
pend on the choice of an interpolation method and to have no clear
convergence guarantees. We propose a convex optimization proce-
dure in order to replace the sifting process in the EMD. The consid-
ered method is based on proximal tools, which allow us to deal with
a large class of constraints such as quasi-orthogonality or extrema-
based constraints.

Index Terms— EMD, Trend-fluctuation, Convex optimization,
Proximal algorithms.

1. INTRODUCTION

The concept of EMD was introduced by Huang et al. [1] in order to
propose an adaptive data analysis method to study trend and instan-
taneous frequency of non-linear and non-stationary data.

The principle of the EMD is to adaptively decompose a signal
into a collection of intrinsic mode functions (IMF), which are basi-
cally a set of functions oscillating around zero but non-necessarily
constant in frequency and amplitude. The IMF characterization im-
poses the average of the envelope defined by the local maxima and
the envelope defined by the local minima to be zero. It results that a
signal x ∈ R

N can be written as

x =
K∑

k=1

dk + aK , (1)

where, for every k ∈ {1, . . . ,K}, dk ∈ R
N is the intrinsic mode of

order k, and aK ∈ R
N denotes the trend of orderK.

At each step of the EMD, the trend and the IMF of order k ≥ 1,
respectively denoted by ak and dk, are extracted from the trend of
order k − 1 (note that a0 = x). In other words, it is based on a par-
ticular case of trend-fluctuation decomposition [2]. In the EMD, this
decomposition stage is known as the sifting process and it consists
in:
1- initialize a temporary variable s = ak−1,
2- identify all extrema of s,
3- interpolate between minima (resp. maxima) ending up with
some envelope emin (resp. emax),

4- compute the mean envelope m = emin+emax

2 ,
5- extract the residual s = s−m,
6- iterate Steps 2-5 until the residual s achieves a zero mean en-
velope,

7- let the IMF of order k be dk = s and the trend of order k be
ak = ak−1 − s.

Although this technique proved its efficiency through numerous ap-
plications (see [3] and references therein), the result of this method
is highly dependent on the interpolation process in Step 3 and it has
also been pointed out to be sensitive to sampling effects [4]. Most
of all, this technique faces the difficulty of having no mathematical
definition besides its algorithm and thus no convergence properties.

For the last ten years, many references have been focused on
finding a rigorous mathematical formalism for the EMD. On one
hand, Daubechies et al. [5] combined synchrosqueezing (which is a
special case of reassignment methods [6]) with wavelet transform in
order to model EMD. On the other hand, convex optimization tools
has been explored. In [7, 8], the sifting process is replaced by a con-
strained optimization procedure which looks for a trend of order k
belonging to the class of spline functions. In [9], the authors decom-
pose the signal into its local median and an IMF by solving a nonlin-
ear optimization problem which involves a dictionary learning step.
This method has been generalized in [10] in order to simultaneously
extract the K modes, but it still requires a learning stage. In the im-
age processing field, the matching of trend-fluctuation decomposi-
tion is known as geometry-texture decomposition [11]. This field of
interest deals with multicomponent convex optimization techniques
in order to simultaneously constrain the textural and the geometric
components [12].

The proposed approach follows the idea of texture-geometry
decomposition with further specific EMD features such as quasi-
orthogonality and extrema-based constraints. It results that a mul-
ticomponent primal-dual algorithm will be proposed and the associ-
ated convergence property will be presented.

In Section 2, we review the recent advances in non-smooth
convex optimization and we detail the most recent convex criteria
designed for trend-fluctuation decomposition. In Section 3, we
discuss the choice of the proposed criterion and we present a mul-
ticomponent version of the primal-dual algorithm named M+LFBF
[13] as well as the associated convergence property. Experimental
results and comparisons with existing methods are given in Sec-
tion 4. Conclusions will be drawn in Section 5, outlying possibilities
of future works.

Notations Throughout this paper, we denote by R
X the usual X-

dimensional Euclidean space and by Γ0(RX) the class of lower
semicontinuous convex functions from R

X to ]−∞,+∞] which are
proper in the sense that domϕ =

{
y ∈ R

X
∣∣ ϕ(y) < +∞

}
%= ∅.

Argmin refers to a set of minimizers while argmin denotes a
unique minimizer.
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2. SIGNAL DECOMPOSITION AND CONVEX
OPTIMIZATION

2.1. Proximal methods

During the last decades, convex optimization methods have been
shown to be very effective for solving inverse problems (for in-
stance, algorithms such as Projection Onto Convex Sets (POCS) [14]
or parallel approaches such as block-iterative surrogate constraint
splitting [15]). However these methods are not applicable to non-
differentiable objective criteria, which become of great interest with
the compressed sensing development involving "1-minimization.
Consequently, since 2004, there has been a large interest for the
proximal methods which are designed to deal with convex but non-
necessarily differentiable functions [16]. As indicated by the name
of these methods, they are built on the Moreau proximity operator.

Definition 2.1 [17] LetH be an Hilbert space. Let ϕ ∈ Γ0(H). For
every u ∈ H, the proximity operator of ϕ is

proxϕ : u &→ argmin
v∈H

ϕ(v) +
1
2
‖u− v‖2. (2)

A particular example of proximity operator is the projection onto a
convex set C ⊂ H . Indeed, if ιC denotes the indicator function of
C (it takes on the value 0 in C and +∞ in H \ C) then the projec-
tion operator PC is proxιC

. For a detailed account of the theory of
proximity operators, see [16] and references therein.

The large interest for proximal tools have enabled to develop a
large panel of algorithms to efficiently solve Problem 2.2.

Problem 2.2 LetH be an Hilbert space. For every i ∈ {1, . . . , I},
let Gi be an Hilbert space, let ϕi ∈ Γ0(Gi), and let Li : H → Gi be
a bounded linear operator. The problem consists in finding

û ∈ Argmin
u∈H

I∑

i=1

ϕi(Liu). (3)

The class of proximal algorithms can be split in two groups: the
primal algorithms [16] and the primal-dual algorithms [13]. To sum-
marize, the primal algorithms generally require to compute the in-
verse of

∑
i L

∗
iLi whereas the primal-dual iterations only involve

the computation of Li and L∗
i . However, we have to note that even

if the primal-dual methods are often easier to implement than the
primal methods, they generally converge slower.

A multicomponent version of Problem 2.2 can be achieved by
considering the product spaceH = H1 × . . .×Hm equipped with
the usual vector space structure and the scalar product

(∀(u,v) ∈ H×H), (u,v) &→
m∑

i=1

〈ui|vi〉, (4)

where u = (ui)1≤i≤m denotes a generic element inH. The readers
could refer to [12] for details on the multicomponent primal prox-
imal algorithms. This multicomponent formalism will be used in
Section 3 in order to deal with the primal-dual proximal algorithm
M+LFBF [13].

2.2. Signal decomposition and variational approach

The first interpretation of the EMD in term of convex optimization
has been proposed by Meignen and Perrier [7]. In this former work,
the authors have replaced the sifting process by convex optimization
techniques. The extraction of the trend is achieved by considering,
for every k ∈ {1, . . . ,K},

ak ∈ Argmin
a∈RN

‖a‖2 s.t. a ∈ Π ∩ Cak−1
(5)

where ak denoted the trend of order k while dk = ak−1 − ak de-
notes the IMF of order k, Π denotes the space of spline functions,
and Cak−1

denotes a constraint onto the dynamic range of the mean
envelope at the location of the extrema of ak−1. Note that the ini-
tialization is reduced to a0 = x. To be entirely accurate, we have
to specify that the variable to be optimized in (5) is not the trend but
the coefficients associated to the Hermite interpolant of a. In [8], the
dynamic range constraint is replaced by a constraint which imposes
the symmetry of the upper and lower envelopes of ak−1 − a. The
limitation stays that this approach requires a first approximation a of
ak in order to deal with a convex constraint. Note that this approach
still looks for a mean envelope in the space of spline functions.

It is then interesting to remark that a similar problem has been
looked at in image processing. This problem is known as image
decomposition into texture and geometry components and, more
generally, the idea is to decompose an image in elementary struc-
tures. In the context of denoising, this decomposition has been
achieved in [18] with a total variation potential in order to extract
a piecewise smooth component. In [11, 19], a criterion combining
total variation and G-norm has been considered in order to perform
geometry-texture decomposition. Note that the G-norm had been
theoretically introduced few years before in [20] in order to model
strong oscillations. In most recent works, the oscillating patterns
have been extracted in considering "1-norm applied on frame coef-
ficients [12, 21, 22]. The use of composite criteria have also been
proposed in [23]. The general variational formulation associated to
the geometry-texture decomposition is presented in Problem 2.3.
Problem 2.3

Find (â, d̂) ∈ Argmin
a∈RN, d∈RN

h(a, d) + g(a) + f(d),

where g ∈ Γ0(R
N) and f ∈ Γ0(R

N ) are potentials promoting the
properties of the geometry and texture components separately, while
h ∈ Γ0(R

N × R
N ) is a coupling term modeling their interaction.

The case of three components jointly estimated has been consid-
ered in [11].

3. PROPOSED APPROACH

Based on the state-of-the-art of EMD and image decomposition, we
propose to replace the sifting process by a trend-fluctuation decom-
position method based on a multicomponent variational analysis.
First, we have to specify the properties that we want to impose onto
each component. On one hand, the IMF of order k is expected to

• have a zero-mean envelope,
• be quasi-orthogonal to the IMF of order j < k.

The first condition is the most difficult to impose. We propose a
method derived from [8] in order to deal with it. We denote by
(tk["])1≤#≤L the location of the local extrema of ak−1, and these
extrema are alternatively minima and maxima. We can approximate
the first condition by considering, for every " ∈ {1, . . . , L},

∣∣∣∣∣
d
[
tk["]

]
+

α#d
[
tk["− 1]

]
+ β#d

[
tk["+ 1]

]

α# + β#

∣∣∣∣∣
< ε# (6)

where α# = tk[" + 1] − tk["], β# = tk["] − tk[" − 1], and ε# >
0. The coefficients α# and β# are chosen so that, in Eq. (6), the
extremum d

[
tk["]

]
(e.g., a maximum) is approximately compared to

its mirror-point on the would-be other envelope (e.g., the minimum
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envelope) which would be locally defined thanks to d
[
tk["−1]

]
and

d
[
tk[" + 1]

]
. Note that no envelope is explicitly computed. This

condition can be globally rewritten as

‖Dkd‖1 ≤ εk, (7)

where εk > 0 and Dk ∈ R
N×N denotes a linear operator which

models the penalization imposed on d at each location tk["]. The
second condition requires to impose a constraint taking the form

|〈d, dj〉| ≤ ζk,j , (8)where ζk,j > 0.
On the other hand, the trend of order k has to be a smooth signal.

This condition can be achieved by imposing

‖Aa‖pp ≤ ηk, (9)

where ηk > 0, p ≥ 1 (typically p = 1 or p = 2), and A denotes
a derivative operator (1st or 2nd order derivative). If p = 1, it cor-
responds to a total variation constraint. At last, we want to impose
that the sum of the extracted trend and the IMF is close to ak−1.
However, we avoid to use a strict equality in order to limitate the
sampling effects.

The criterion we propose to consider is summarized in Prob-
lem 3.1.

Problem 3.1 Let d0 = 0 and let a0 = x. For every k ∈
{1, . . . ,K},

(ak, dk) ∈ Argmin
a∈RN , d∈RN

‖ak−1 − a− d‖22

subject to






‖Aa‖pp ≤ ηk,

‖Dkd‖1 ≤ εk,

(∀j ∈ {0, . . . , k − 1}), |〈d, dj〉| ≤ ζk,j ,

where ηk>0, εk>0, ζk,j≥0, p≥1,A ∈ R
N×N, andDk ∈ R

N×N .

The criterion involved in Problem 3.1 is a particular case of Prob-
lem 2.2 with I = k + 2 and u = (a, d). Consequently, Prob-
lem 3.1 can be solved with a multicomponent version of M+LFBF
[13] whose iterations and convergence result are detailed in Algo-
rithm 1 and Proposition 3.2. The choice of this specific proximal
algorithm among the other ones is motivated by the presence of the
linear operator D and the presence of the quadratic term for the ob-
jective function (i.e. a Lipschitz differentiable function).

Proposition 3.2 The sequence (a(n), d(n))n∈N generated by Algo-
rithm 1 converges to a solution (ak, dk) of the minimization problem
involved in Problem 3.1.

The convergence result in Proposition 3.2 is obtained by apply-
ing [13, Theorem 4.2] inH = R

N × R
N and using Eq. (4).

In Algorithm 1, the constraints sets (Cζk,i−2

i )2≤i≤k+1, Cηk
1 ,

and Cεk
1 are involved. The definition of this convex sets subject to

Problem 3.1 are specified below as well as the associated projection
operators.

The projection onto the convex set Cεk
1 = {u ∈ R

N | ‖u‖1 ≤
εk} can be computed iteratively by considering [24] or by using epi-
graphical projection techniques as detailed in [25]. The projection
onto the convex set Cηk

1 = {u ∈ R
N | ‖u‖pp ≤ ηk} has been previ-

ously detailed for the case where p = 1 and it has an explicit form
when p = 2:

(∀u ∈ R
N ), PC

ηk
1

u =

{
u, if ‖u‖2 ≤ ηk
ηku
‖u‖2

, otherwise. (10)

For every i ∈ {2, . . . , k + 1}, the projection onto the constraint set
Ciζk,i−2 = {u ∈ R

N | |〈u, di−2〉| ≤ ζk,i−2} is, for every u ∈ R
N ,

P
C

ζk,i−2

i

u =

{
u, if |〈u, di−2〉| ≤ ζk,i−2

u+
ζk,i−2−〈u,di−2〉

‖di−2‖
2
2

di−2, otherwise. (11)

4. EXPERIMENTAL RESULTS

We propose to compare the proposed method (P-EMD) with the
classical EMD (C-EMD) [26] and the optimization-based EMD (O-
EMD) proposed in [8]. We consider two experiments for which the
original signals (IMFs and trend) are represented in black, the results
obtained with traditional EMD [26] are plotted in blue, the results
extracted with the optimization procedure of Oberlin et al. [8] in
green, and those by the proposed approach in red. For each figure,
the signal x to be decomposed is plotted on the left column, the re-
suls are presented on the middle column, and a zooming in of the
results is plotted on the right column.

The first experiment is presented in Figure 1. The signal to be
decomposed consists in a sum of a triangular signal and an AM sig-
nal (K = 2) with N = 1000. The oscillating part is plotted on the
top row while the trend is presented on the bottom row. The experi-
mental parameters are η1 = 0.02, ε1 = 0.58, ζ1,0 = 0, p = 1, and
A denotes the matrix associated to the filter ( 14 ,−

1
2 ,

1
4 ). Note that

the choice of p = 1 allows us to model the non-smooth behavior of
a1. When p = 2 the proposed method achieves a mean square error
of 14.1×10−5 . For this example, it appears that all the methods give
good results, however we can observe that the proposed approach al-
lows us to avoid the spline behaviour which is not desired in the trend
component.

The second experiment is presented in Figure 2. The signal con-
sists in a sum of a three components (K = 3) of size N = 1000:
the first mode and the trend have a constant amplitude and frequency
while the second mode denotes a AM signal. The experimental pa-
rameters are η1 = 37.2, η2 = 0.05, ε1 = 13.6, ε2 = 69.2, ζ1,0 = 0,
ζ2,0 = 0, ζ2,1 = 0.1, p = 1, and A denotes the matrix associated
to the filter ( 14 ,−

1
2 ,

1
4 ). The results obtained with the proposed ap-

proach are very close to the classical EMD results for a2 and d1 and
are better than the convex optimization procedure developed in [8]
for a2. However, we have to remark that in the low amplitude part
of d2 our approach introduces some undesired residual oscillations.

The computational time is about 20 secondes for the first exper-
iment and 100 secondes for the second one.

5. CONCLUSIONS AND PERSPECTIVES

We propose an efficient method in order to replace the sifting process
in EMD. This work follows the one in [8] but it requires neither
the use of splines nor a first estimate of the trend of order k. The
proposed approach is based on proximal tools and its good behaviour
is evaluated and compared to the state-of-the-art methods.

The proposed approach allows us to be robust to sampling ef-
fects and to avoid a spline interpolation procedure which is known to
lead to some artefacts. Moreover, the proposed approach has conver-
gence guarantees that classical EMD does not have. The first results
are encouraging and they pave the way to many questions such as:
how could we easily select the parameters ε and η which have a key
role in the efficiency of the proposed approach or do we need to add
other constraints? How is the sensitivity of these parameters regard-
ing the decomposition results? How can we insure the robustness to
noise?
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Algorithm 1 – Multicomponent M+LFBF.
Initialization

Let τ = 4 +

√
max(‖A‖2, ‖Dk‖2) + (k − 1)

Let σ ∈]0, 1/(τ + 1)[, γ ∈ [σ, (1− σ)/τ )], a(0) ∈ R
N , d(0) ∈ R

N

For every i ∈ {1, . . . , k + 1}, v(0)i ∈ R
N and ṽ(0)i ∈ R

N

For n = 0, 1, . . .


– Steps involving gradient and adjoint operators–
y(n) = a(n) − γ

(
2(a(n)+ d(n)− ak−1) + A)v(n)

1 +
∑k+1

i=2 v(n)
i

)

ỹ(n) = d(n) − γ
(
2(a(n)+ d(n)− ak−1) +D)

k ṽ(n)
1 +

∑k+1
i=2 ṽ(n)

i

)

– Steps involving linear operators–
z(n)
1 = v(n)

1 + γAa(n)

z̃(n)
1 = ṽ(n)

1 + γDkd
(n)

– Steps involving proximity operator computation–
p(n)
1 = z(n)

1 − γPC
ηk
1

(z(n)
1 /γ)

p̃(n)
1 = z̃(n)

1 − γPC
εk
1

(z̃(n)
1 /γ)

– Steps involving linear operators–
q(n)
1 = p(n)

1 + γAy(n)

q̃(n)
1 = p̃(n)

1 + γDkỹ
(n)

– Updating steps–
v(n+1)
1 = v(n)

1 − z(n)
1 + q(n)

1

ṽ(n+1)
1 = ṽ(n)

1 − z̃(n)
1 + q̃(n)

1

For i = 2, . . . , k + 1


– Updating steps–
z(n)
i = v(n)

i + γa(n)

z̃(n)
i = ṽ(n)

i + γd(n)

– Step involving proximity operator computation–
p̃(n)
i = z̃(n)

i − γP
C

ζk,i−2

i

(z̃(n)
i /γ)

– Updating steps–
q(n)
i = γy(n)

q̃(n)
i = p̃(n)

i + γỹ(n)

v(n+1)
i = v(n)

i − z(n)
i + q(n)

i

ṽ(n+1)
i = ṽ(n)

i − z̃(n)
i + q̃(n)

i

– Steps involving gradient and adjoint operators–
u(n) = y(n) − γ

(
2(y(n)+ ỹ(n)− ak−1) +A)p(n)

1

)

ũ(n) = ỹ(n) − γ
(
2(y(n)+ ỹ(n)− ak−1) +D)

k p̃(n)
1 +

∑k+1
i=2 p̃(n)

i

)

– Updating steps–
a(n+1) = a(n) − y(n) + u(n)

d(n+1) = d(n) − ỹ(n) + ũ(n)
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decomposition into a bounded variation component and an oscillating
component,” Int. J. Comp. Vis., vol. 22, pp. 71–88, 2005.

[20] Y. Meyer, Oscillating patterns in image processing and in some non-
linear evolution equations, AMS, Providence, RI, 2001.

[21] J.-L. Starck, M. Elad, and D. Donoho, “Image decomposition via
the combination of sparse representations and a variational approach,”
IEEE Trans. Image Process., vol. 14, pp. 1570–1582, 2005.

[22] S. Anthoine, E. Pierpaoli, and I. Daubechies, “Deux méthodes de
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Fig. 1. Sum of two signals. The signal x is on the left, the results are on the middle, and a zoom of the results is on the right. Signal is in
black, traditional EMD is in blue, the optimization procedure of [8] is in magenta, and the proposed approach is in red. The mean square
errors for the different methods are similar for a1 and d1: 8.3× 10−5 (C-EMD), 49× 10−5 (O-EMD), 7.5× 10−5 (P-EMD).
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Fig. 2. Sum of three signals. The signal x is on the left, the results are on the middle, and a zoom of the results is on the right. Signal is
in black, traditional EMD is in blue, the optimization procedure of [8] is in magenta, and the proposed approach is in red. The mean square
errors are for d1: 0.8× 10−2 (C-EMD), 1.5× 10−2 (O-EMD), 1.6× 10−2 (P-EMD), for d2: 0.8× 10−2 (C-EMD), 4.1× 10−2 (O-EMD),
3.9× 10−2 (P-EMD), and for a2: 0.4× 10−3 (C-EMD), 37× 10−3 (O-EMD), 1.5× 10−3 (P-EMD).
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