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ABSTRACT

This paper addresses the problem of separation of pitched

sounds in monaural recordings. We present a novel feature for

the estimation of parameters of overlapping harmonics which

considers the covariance of partials of pitched sounds. Sound

templates are formed from the monophonic parts of the mix-

ture recording. A match for every note is found among these

templates on the basis of covariance profile of their harmon-

ics. The matching template for the note provides the sec-

ond order characteristics for the overlapped harmonics of the

note. The algorithm is tested on the RWC music database

instrument sounds. The results clearly show that the covari-

ance characteristics can be used to reconstruct overlapping

harmonics effectively.

Index Terms— monaural sound source separation, sinu-

soidal modeling

1. INTRODUCTION

Sound Source Separation has numerous applications in anal-

ysis, coding and manipulation of audio signals. A large set of

sounds are harmonic sounds, which have special importance

in music. Various efforts have been concentrated on the sep-

aration of harmonic sounds [1] [2] [3] [4]. The energy in the

pitched sounds are concentrated in its harmonics and gener-

ally not all the harmonics overlap with the harmonics of the

other concurrent sounds. Harmonics belonging to the same

source have some similar properties. These properties can be

exploited to reconstruct the overlapping harmonics with the

help of non-overlapping harmonics.

The assumption that the rough shape of the amplitude

spectrum of natural sounds is usually slowly-varying with re-

spect to time and frequency, is known as spectral smooth-

ness principle [5]. But this assumption is often violated in

real instrument sounds [4]. The phenomenon that the am-

plitude envelopes of different harmonics of the same source

tend to be similar, is known as common amplitude modula-

tion (CAM) [4]. But CAM deteriorates with difference in the

amplitudes of harmonics. Also in the instruments like vio-

lin and flute the excitation (bow-string contact and mouth-tip

contact respectively) can change within a note. This causes

the harmonic structure to change[6]. Hence the energy in one

harmonic may increase while it is decreasing in another har-

monic.

Spectral Smoothness assumes a first order relation be-

tween partials, i.e. the amplitude of a partial depends directly

on the amplitude of other partials. On the other hand CAM

assumes second order relation of partials (the variation in

the amplitude of a partial depends upon the variation in the

amplitude of other partials). But rather than assuming non-

uniform covariance across harmonics, it oversimplifies by

assuming uniform covariance between harmonics. To over-

come the limitations of the above two assumptions in dealing

with real world sounds, we propose to use the full covariance

profile to reconstruct the overlapping harmonics.

Sinusoidal modeling has been used to decompose audio

signals into their deterministic or sinusoidal and stochastic

parts. Since we have used only harmonic sources we as-

sume that all the sources can be faithfully represented by si-

nusoidal modeling. Following this assumption, we have used

sinusoidal modeling for representations and calculations in

our work. Our aim in this paper is to prove the relevance

of the new feature in reconstructing overlapping harmonics

rather than presenting an end-to-end source separation sys-

tem. Hence we assume that the onset, offset, pitch and source

instrument of each note present in the mixture are known.

2. THE PROBLEM FORMULATION

The time axis is divided into frames and the whole processing

is done frame-wise. Suppose a note has H harmonics and its

duration is L frames. Then the sinusoidally modeled part of

the signal at lth frame of a note is given as:

sl(n) =

H∑
h=1

ah,l cos(2πfh,ln+ φh,l), n = 1, . . . , N

(1)

Here ah,l, fh,l and φh,l are the amplitude, frequency and ini-

tial phase of the hth sinusoid respectively, at the lth frame of

the note. Now, in a given musical piece we have J such notes

starting at their respective onset frames oj . The number of

frames in note j is given by Lj . Using note lengths (Lj) and

onsets(oj) we can find out which notes are present at a partic-

ular frame m of the music piece. Let Jm be the set of notes
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present in a given frame m. Then

Jm = {j|oj ≤ m ≤ oj + Lj + 1, ∀j ≤ J} (2)

So the sinusoidally modeled part of the musical piece in a

given frame m can be represented as:

x̂m(n) =
∑
j∈Jm

Hj∑
h=1

ajh,m−oj+1 cos(2πfh,m−oj+1n+φh,m−oj+1)

(3)

At a given frame m if cardinality |Jm| > 1, then more than

one note exist at that frame. Since we know the pitch of the

notes, we can estimate the frequency of the harmonics of the

notes. Since most of the energy of the notes is concentrated

at these frequencies, if harmonics of two different notes are

far apart in frequency they can be faithfully reconstructed. To

decide which harmonics are close in frequency or overlapping

with harmonics of other note, a threshold ft is used. So if two

sources j1, j2 occur at frame m, i.e. j1, j2 ∈ Jm, we say

harmonic h1 of source j1 and harmonic h2 of source j2 are

overlapping if

|fh1,m−oj1+1 − fh2,m−oj2+1| < ft (4)

A simple least square formulation can be used to estimate the

parameters of non-overlapping harmonics but not of overlap-

ping harmonics. In this paper we address the problem of find-

ing the parameters of overlapping harmonics. After solving

this it is straightforward to reconstruct the notes.

Consider the matrices Aj , Fj and Φj for each note j,

which will store respectively the amplitudes, frequencies and

initial phases of the sinusoids of the note. The element of

the matrix Aj at row h and column l, i.e. ah,l will give the

amplitude of hth harmonic at lth frame. Let Lj and Hj be

the set of frames and set of harmonics for note j. We define

a set Cj to store the indices of the overlapping or corrupted

elements of Aj or Φj .

Cj = {(h, l)| |fh,l+oj−1 − fh́,l+oj−oi | < ft,

j �= i, i ∈ Jl+oj−1, l ∈ Lj , h ∈ Hj , h́ ∈ Hi}
(5)

A set U j is similarly defined to store the indices of uncor-

rupted harmonics. We also define a set Hju containing the

harmonics which are uncorrupted throughout the occurrence

of the note.

Hju = {h|(h, l) ∈ U j , ∀l ∈ Lj} (6)

These will also be called totally uncorrupted harmonics. A

similar set Hjc will contain the harmonics which are cor-

rupted at least for one frame. Our aim is to estimate the cor-

rect values for matrices Ajs and Φjs at indices given by Cjs.

First amplitudes of sinusoids at overlap regions are estimated.

After that the corresponding phase values are calculated.

3. AMPLITUDE ESTIMATION

This section presents the method for estimating the amplitude

of sinusoids at overlapping regions. The estimation for each

note is done separately and independent of other notes. Rather

than working with amplitudes of the sinusoids, we use their

log amplitudes.

Bj = log(Aj) (7)

Here the logarithm is element wise. A matrix Bju is formed

which contains the log amplitudes of totally uncorrupted har-

monics. Each column of this matrix is treated as a feature

vector. The sample mean of each row of matrix Bju is sub-

tracted from its elements to get the zero mean matrix Zju . We

then calculate the covariance matrix Σju = [σh1,h2]Hju×Hju

as the sum of outer products

σh1,h2 =
1

Lj
(z′h1 · zh2) (8)

Where zhn is the nth row of matrix Zju . The next task is to

find a template sound which matches the covariance matrix of

the note j calculated above.

A template sound is actually a part of or a full note which

does not coincide with any other note. We look for the con-

tinuous regions in the given musical piece where |Jm| = 1.

Suppose there are I such regions and in such a region i, a note

j exists. A log amplitude matrix T́i is calculated using part

of note j in region i. We subtract the mean of each row of

matrix T́i from its elements to calculate the zero mean matrix

Ti. This Ti is our template matrix. We get I such template

matrices by this procedure.

After getting the templates we will now do the matching.

For a given note j, we try to find the best matching template,

independent of other notes. The first necessary condition to

be satisfied by a template i to match is that the number of

harmonics in the template should be more than number of

harmonics of the note j. If the above condition is satisfied,

we try to match the covariance profile of the template and the

note. To do that, we first construct a matrix Tiju containing

the rows of th corresponding to uncorrupted harmonics of

note j. We do Principal Component Analysis of Tiju to get

principal vectors matrix P iju . Now we check whether the

principal vectors Piju can diagonalize the covariance matrix

Σju as:

Diju = (Piju)′ΣjuPiju (9)

Here Diju is the resultant matrix of the diagonalization. To

quantify the amount of diagonalization we define the mea-

sure:

γij =

(∑
m=n

(dijm,n)
2

)
−
⎛
⎝∑

m �=n

(dijm,n)
2

⎞
⎠ (10)

If the principal vectors Piju diagonalize the covariance ma-

trix Σju well, then this means that the covariance profile of
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template i matches with note j. A template for the note j for

which γij is maximum is chosen for its reconstruction.

The reconstruction is obtained using Principal Compo-

nent Analysis (PCA). We do PCA of matrix Zju to find out

the principal vector matrix Pju and projection matrix Yju .

Zju = PjuYju (11)

We have Hju principal vectors to represent uncorrupted

harmonics of note j. For each such vector, we will find out

a corresponding vector to reconstruct corrupted harmonics of

this note. First we will construct a matrix Tij by truncating

the columns of Ti to contain the same number of harmon-

ics(or rows) as j. Now let pu
m be the mth principal compo-

nent , i.e. the mth column of matrix Pju . We project Tij on

a lower dimensional space in which all the dimensions cor-

responding to h ∈ Hju are replaced by one vector pu
m. We

calculate only the first principal component of this projected

data. Only the first coefficient in this principal vector cor-

respond to the direction of pu
m and others correspond to the

basis h ∈ Hjc . After removing that coefficient we get the

mth principal vector pc
m for corrupted harmonics. We cal-

culate the other principal components in the same way and

gather them as columns of matrix Pjc .

The matrix Yju contain the weights of the vectors in Pju

to reconstruct the zero mean log amplitude vectors of uncor-

rupted harmonics. Pjc contains the vectors for corrupted har-

monics corresponding to each vector in Pju . So we calculate

the zero mean log amplitude matrix for corrupted harmonics

as:

Zjc = PjcYju (12)

These zero mean log amplitude values are then utilized for

interpolation of the harmonics in the overlap regions. The

interpolation is done one harmonic at a time using the non-

overlapping log amplitude values which are calculated by

least square estimation and zero mean log amplitudes calcu-

lated by our proposed method. There are scenarios where

a harmonic is corrupted throughout the note. In these cases

interpolation is not possible. We calculate the mean log am-

plitude of such harmonic by interpolation from mean log

amplitudes of nearby harmonics using spectral smoothness

assumption. Please note that we are assuming smoothness

of the mean values of log amplitudes of the harmonics rather

than all the log amplitude values of the harmonics. We add

this mean to our calculated zero mean values of the harmonic

to get the log amplitudes. The log amplitudes are converted

to amplitudes using exponential operation.

The feature proposed by us is of use only if at-least two

harmonics of the note to be reconstructed are totally un-

corrupted. Though this is a realistic assumption in most

cases, it violates when octaves are being played in music.

The presented method is extensible to any number of sources

present, and the separation quality will only be affected by the

amount of overlap of harmonics and independent of number

of sources. In the next section we describe the reconstruction

of phases using these amplitudes. Although the method is

described for presence of two sources at a time, it can easily

be extended to 3 or more sources.

4. PHASE RECONSTRUCTION

We now have the amplitudes of all the sinusoids. We will now

derive phases of sinusoids in the overlap regions. We have to

take the following two things into consideration:

1. There should be continuity between the sinusoids of

consecutive frames.

2. The error between observed mixture and reconstructed

notes has to be minimized.

While estimating the amplitudes at overlaps, we have taken

care for retaining continuity by using interpolation. For ini-

tial phases at frames, we must take care that the initial phase

of the sinusoid at the present frame should match its phase

from the previous frame to get a continuous sinusoid across

the two frames. Suppose i is the current frame and the fre-

quency and initial phase of the previous frames be fi−1 and

φi−1 respectively. If the time shift between the frames is Ts.

To maintain continuity of the harmonic, the initial phase of

the current frame is given by:

φ̂i = (mod fi−1Ts + φi−1, 2π) (13)

To maintain continuity, the value of φi should be nearby φ̂i.

We set a threshold δt for δφ = |φi − φ̂i| such that when,

δφ < δt (14)

we say that φi is continuous. While estimating the initial

phases at overlap regions, we will take care to maintain con-

tinuity by above stated relation.

The relation given in (13) is for ideal case. In practical

scenario there are lot of factors which cause deviation of ob-

served phase with that given by (13). So if extrapolation of the

phase values in overlap regions is done just using the relation

(13) then there will be accumulation of reconstruction error

with the length of extrapolation. Hence it would be better to

take help from the observed mixture to find the phase values.

The phase values which reduce the difference between ob-

served and reconstructed data within the constraint given by

(14) are desired.

We now explain the procedure of phase reconstruction in

detail. We first figure out the frames for which |Jm| > 1.

Let m be such a frame. Let j1 and j2 be two sources which

exist at this frame, i.e. Jm = {j1, j2}. Let l1 and l2 be

the corresponding column numbers for frame m in matrices

Φj1 and Φj2 . Suppose harmonic h1 of note j1 overlaps with

harmonic h2 of note j2. We will first find out the constraint for

continuity for the phase of harmonic h1. The same procedure

will be applied on h2 too. There are two possible cases:
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1. The phase of the harmonic is known at either side of

the frame, i.e. φh1,l1−1 or φh1,l1+1 is known.

2. The phase of the harmonic is unknown at both sides,

i.e. both φh1,l1−1 and φh1,l1+1 are unknown.

For the first case we can find out the expected phase φ̂h1,l1

with the use of (13).

The threshold mentioned in (14) is actually frequency

dependent. We define a constant tt(typically tt = 0.0005)

whose unit is time.The threshold δt1 is calculated as:

δt1 = πttfh1,l1 (15)

When δt1 > π, we set δt1 = π. The above relation is based

on the fact that the perceptual sensitivity to the continuity of

phase decreases as frequency increases [7]. The constraint on

φh1,l1 to ensure continuity is:

|φ̂h1,l1 − φh1,l1 | ≤ δt1 (16)

For the second case when both φh1,l1−1 and φh1,l1+1 are un-

known, we do not have any information and hence no con-

straint for continuity too. So we take φ̂h1,l1 = 0 and δt1 = π.

The above mentioned procedure is applied also for φh2,l2

to get φ̂h2,l2 and δt2 . Now the range in which φh1,l1 and φh2,l2

should be located to maintain continuity is known.

The next step is the search for optimum φh1,l1 and φh2,l2

which will minimize the difference between the observed data

xm and sinusoids produced by these parameters.

ξ =|xm(n)− (ah1,l1 cos(2πfh1,l1n+ φh1,l1)

+ ah2,l2 cos(2πfh2,l2n+ φh2,l2))|
(17)

Our aim is to minimize ξ. We do this by declaring some can-

didates for φh1,l1 and φh2,l2 which follow the constraint de-

rived and choosing the pair of candidates which minimize ξ.

The above procedure is repeated for all the overlap regions to

get all the phase values.

5. EXPERIMENTAL RESULTS

Simulation experiments were carried out to evaluate the per-

formance of the proposed method. The sound signals were

taken from RWC Musical Instrument Sound Database [8].

The database for experiment consisted of 4 pieces from Pi-

anoforte, 1 piece from Harmonica (Blues Harp), 6 pieces from

Classic Guitar (Nylon String), 1 piece from Ukulele, 4 pieces

from Mandolin, 4 pieces from Violin and 2 pieces from Flute.

The Musical pieces were of length 30s each. A musical piece

from one instrument was added with a musical piece from an-

other instrument to get a mixture. 63 such mixtures of dura-

tion 30s each were prepared for simulation experiments. The

onset, offset and pitch values of notes were calculated from

the pieces before mixing.

The sampling rate used was 16 kHz and frame size was

1024 samples. The signal to noise ratio of the estimated signal

is given by:

SNRest = 10 log

∑
n x

2
o(n)∑

n(xo(n)− xe(n))2
(18)

The signal to noise ratio of the mix is given by:

SNRmix = 10 log

∑
n x

2
o(n)∑

n(xo(n)− x(n))2
(19)

Here, xo is the original source signal prior to mixing, xe is the

estimated source signal from the mixture and x is the mix-

ture signal. The SNR gain is then ΔSNR = SNRest −
SNRmix. The mean value of the total gain in SNR from all

the mixtures was 18.659. The minimum gain in SNR was

−2.8930 and maximum was 36.1355. A histogram of total

gain in SNR from the simulations is presented in figure 1.
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Fig. 1. Histogram showing the total SNR gain obtained by

applying the proposed algorithm on 63 mixtures.

Our algorithm performs better than many of the state-

of-art sound separation algorithms. The algorithms by Li[4]

and Virtanen[5] give 14.7 and 11.0 gain in SNR respectively

while using ground truth pitch. Our algorithm gives negative

SNR improvement for 8% cases. This is because of follow-

ing reasons:

• Inharmonicity of partials - The frequencies of har-

monics was estimated using the pitch values. Though

our algorithm takes care of inharmonicity to some ex-

tent, in many cases the estimation can go wrong. Some-

times a harmonic from a source can get be wrongly at-

tributed to some other source. This increases the error

by a lot.

• Estimation of amplitudes without considering ob-
served data - The amplitudes at overlap regions were

estimated by just using covariance profile of the note

and not the observed data at those regions. This has at

times resulted in amplitudes which do not accede well

with the observed data.
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• Effect of overlap on regions considered as non-
overlapping - Though we have set a threshold(ft)
on the difference between frequencies of harmonics to

decide whether or not they are overlapping, some en-

ergy of the harmonics is spread farther than ft. These

cause error in estimation of amplitudes and phases

of elements which are considered uncorrupted. In-

terpolation/extrapolation using these erroneous values

sometimes leads to unexpected amplitude trajectories.

In spite of these limitations, the overall performance of our

algorithm is very good. The strength of this algorithm lies

in its ability to separate highly dynamic sounds. Examples

of separated signals are available at {http://iris.ee.
iisc.ernet.in/index_files/priyank.htm}.

6. CONCLUSIONS

A new feature for reconstruction of amplitudes of overlap-

ping harmonics in musical recordings is presented. Also a

constrained search for phase reconstruction is proposed with

frequency dependent constraint. Our method performs well

even for instruments with changing harmonic structures such

as violin and flute. The method requires onset,offset and pitch

values a priori, hence can be implemented along with a multi-

pitch estimator.
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