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Abstract—In this study, Teager-energy based Mel-frequency
cepstral coefficients (TEMFCCs) are proposed for Automatic
Speech Emotion Recognition (ASER) in noisy environments.
TEMFCCs are obtained by taking the absolute value of the
Teager-energy operator (TEO) of the short-time Fourier trans-
form of the signal (STFT), warping it to a Mel-frequency scale,
and taking the discrete cosine transform (DCT) of the log-
Mel Teager-energy spectrum. Experiments on classification of
discrete emotion categories show that TEMFCCs are more robust
than MFCCs in noisy conditions, while TEMFCCs and MFCCs
perform similarly for clean conditions.
Index Terms—emotion recognition, speech analysis, nonlinear

acoustics

I. INTRODUCTION
Automatic speech emotion recognition (ASER) refers to the
task of classifying speech phrases into emotional classes.
Although it is a relatively new field of research, it has
many potential applications. In human-computer or human-
human interaction systems, emotion recognition systems could
provide users with improved services by being adaptive to their
emotions.
Many techniques for employing ASER are drawn from the

field of automatic speech recognition (ASR). Despite recent
advances in the state-of-the art of ASER, ASER in noisy
conditions remains an open research problem. The techniques
that have been proposed in the literature for improving the
robustness of speech emotion recognition in noise mainly fall
into three categories: acoustic model-adaptation algorithms,
speech-enhancement algorithms and robust feature-extraction
algorithms. We concentrate in the problem of robust feature
extraction. The TEMFCC feature set we propose is motivated
by the nonlinear TEO operator that estimates the energy of
the source of a resonance signal, and MFCCs.
MFCCs are one of the most widely used cepstral representa-

tions for ASER but are easily affected by common frequency-
localized random perturbations, to which human perception is
largely insensitive [4]. MFCCs’ degradation of performance
led researchers to utilize TEO in the development of new
cepstral representations. The effect of noise can be eliminated
by using the TEO in feature extraction [11]. Teager-energy
based mel-frequency cepstrum coefficients (T-MFCCs) [9]

were developed for language identification (LID) and make
use of the TEO of the signal. In this paper we design a front-
end that combines a mel-filterbank with the Teager-energy
estimation method. The proposed features are evaluated on
speech emotion recognition tasks in noise and are shown to
be more robust than the MFCCs and T-MFCCs.

II. TEAGER ENERGY OPERATOR
Newton’s law of motion for an oscillator with mass m and
spring constant k states that

d2x

dt2
+

k

m
x = 0 (1)

and its solution consists of a signal x(t) = acos(φ(t)). The
system’s total energy E is the sum of the kinetic and potential
energy and is given by

E =
1

2
kx2 +

1

2
mẋ2 ⇒ E =

1

2
mω2a (2)

where ω = dφ(t)/dt.
Motivated by the above analysis of the energy of an oscillat-

ing system, Teager and then Kaiser [5] proposed the need for
time-frequency analysis methods that can track rapid energy
changes within a glottal cycle. This led to the definition of
TEO based on a definition of energy that accounts for the
energy in the system that generated the signal [11].
For the case of real continuous-time signals, TEO is defined

as:
Ψ(x(t)) = ẋ(t)2 − x(t)ẍ(t) (3)

and for real discrete-time signals as:

Ψ(x[n]) = x[n]2 − x[n− 1]x[n+ 1] (4)

As an energy operator, we expect TEO to have positive values,
but this is not always the case for all signals. For complex
continuous-time signals [6], the definition of TEO is:

Φ(x(t)) = Ψ(#{x(t)}) +Ψ(${x(t)}) (5)

and for complex discrete-time signals is:

Φ(x[n]) = Ψ(#{x[n]}) +Ψ(${x[n]}) (6)
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The above definition of energy for complex signals exhibits
the symmetry of the operator more clearly. TEO of a complex
signal is the sum of the energy of the real and imaginary parts
of the signal. Note that both definitions yield a real quantity,
as expected for an energy operator.

A. Prior work on TEO in Time-Frequency analysis and Signal
Representations
Time-frequency distributions estimating the signal energy con-
tent in time and frequency bins are considered indispensable
for the study of non-stationary signals, such as speech, radar,
geophysical, and biological signals [3]. TEO is frequently used
in the development of feature representations based on non-
linear transformations.
Thus, the computation of such time-frequency estimations

can be generalized as an energy estimation problem in the
presence of noise. The most widely used energy estimation
scheme is based on the squared energy operator (SEO), S(·),
where the squared signal is the instantaneous energy term. The
definition of SEO for continuous time signals is:

S(x(t)) = x2(t) (7)

and for discrete time signals as:

S(x[n]) = x2[n] . (8)

Many researchers, in order to gain advantage from the fact that
TEO incorporates both amplitude and frequency information,
have developed frequency representations that utilize TEO.
Our work demonstrates that TEO in frequency domain pro-
vides better representations of non linear variations of energy
than in time signals. In [8], a system is developed for the
detection of human stress and emotions based on TEO and log-
frequency power cepstral coefficients (LFPCs). In [4], Teager-
energy cepstrum coefficients (TECCs) are proposed that use
TEO and a constant Q-gammatone filter-bank. In [7] Teager-
energy features derived from the power spectrum difference
(PSD) and TEO have been proposed to improve the robustness
of speech recognizer in the presence of white noise. In [10], an
extended version of TEO is developed called, variable length
TEO (VTEO)

V TEOj(x[n]) = x[n]2 − x[n− j]x[n+ j],

in order to identify speakers from their “hum”; note that
ordinary TEO is a special case for V TEOj with j = 1.
The general process when TEO is applied in the frequency

domain is to pass the frame spectrum, S(k), of the signal
s(n) through a filter bank (e.g., Mel-scale or Q-gammatone)
and then apply TEO in the frequency domain as follows:

Ψ(|Sm
i (k)|) = |Sm

i (k)|2 − |Sm
i (k + 1)||Sm

i (k − 1)|

where Sm
i (k) is the sampled frequency domain output of

the ith filter in the mth frame. Instead of using the above

approach, we apply TEO on the STFT of signal and thus we
make use of the complex version of TEO (equation (6)):

Φ(Sm
i (k)) = Ψ(#{Sm

i (k)}) +Ψ(${Sm
i (k)}) .

The average energy Em
i of the ith filter Sm

i (k) in the mth

frame is

Em
i =

1

Ni

Ni
∑

k=1

|Sm
i (k)|2, i = 1, . . . , L, m = 1, . . . ,M (9)

where L is the total number of filters in a Mel-scaled filter
bank and Ni is the number of frequency coefficients in the
ith Mel filter. The average frame energy Em

avg of mth frame
is

Em
avg =

1

L

L
∑

i=1

Em
i . (10)

The average Teager-energy Tm
i of the ith Mel filter in the mth

frame is
Tm
i =

1

Ni

∑

|Ψ(|Sm
i (k)|)| (11)

and the average Teager-energy Tm
avg of the mth frame is

Tm
avg =

1

L

L
∑

i=1

Tm
i . (12)

Similarly, we define the average Teager-energy TCm
i of the

ith mel-filter in the frame of the complex signal Sm
i (k) as

TCm
i =

1

Ni

∑

|Φ(Sm
i (k))| (13)

and the average Teager-energy TCm
avg of mth frame as

TCm
avg =

1

L

L
∑

i=1

TCm
i . (14)

To show the effectiveness of the features obtained by con-
ventional energy and the Teager-energy, we compared the
envelopes of Em

avg , Tm
avg , and TCm

avg (for m = 1, . . . ,M )
of clean and noisy (0 dB white and pink noise) samples
of an emotional phrase (anger) uttered by a male speaker
(Figure 1). We calculate the root square error (RMSE) between
(Em

avg)noisy and (Em
avg)clean,

ERMSE =

√

√

√

√

∑M
m=1

[(Em
avg)noisy − (Em

avg)clean]
2

∑M
m=1

[(Em
avg)clean]

2
(15)

as a statistical measure of comparison. The above statistical
measure is proportional to 1/SNR, so the lower it is, the
better the estimation of energy is. Similarly, we compute the
quantities TRMSE and TCRMSE for Tm

avg and TCm
avg. Table

I shows the calculated RMSE values. Features extracted from
Tm
i and TCm

i give better performance than Em
i in noisy

environment. Hence, the application of the complex TEO in
the frequency domain outperforms both the application of the
real TEO in the frequency domain and the squared energy
estimator as an energy estimator in noisy environments.
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Fig. 1: Em
avg , Tm

avg , and TCm
avg envelops for an emotional

phrase expressing anger uttered by a male speaker. The left
column is for AWGN and the right column for pink noise

III. TEMFCC PARAMETERS

Calculation of TEMFCC requires the following steps:
1) The speech signal s[n] is first passed through a pre-
processing stage, which includes frame blocking, ham-
ming windowing with an analysis window w[n], and
pre-emphasis, to give the pre-processed speech signal
s[n̂].

2) The discrete Fourier transform (DFT), S[n̂,ωk], of s[n̂]
is computed:

S[n̂,ωk] =
∞
∑

m=−∞

s[m]w[n̂−m]e−jωkm (16)

where ωk = 2π
N
k and N is the DFT length.

3) The TEO of S[n̂,ωk], Φ(S[n̂,ωk]) is calculated and
the magnitude of Φ(S[n̂,ωk]) is then weighted by a
mel-filterbank Vl[ωk]. This filter bank is composed by
a series of filter frequency responses whose center
frequencies and bandwidths roughly match those of the

TABLE I
RMSE VALUES FOR Em

avg , Tm
avg , AND TCm

avg

White noise Pink noise
ERMSE 1.0920 0.0408
TRMSE 0.1650 0.0233
TCRMSE 0.0066 0.0076

log
(Amplitude)

Frequency (Hz)

1

0.5

4000

Fig. 2: Triangular mel-scale filter bank with 24 filters

auditory critical band filters (mel-frequency warping).
An example of such a filter is shown below.

4) We then compute the energy in Φ(S[n̂,ωk]), weighted
by each mel-scale frequency response. The resulting
energies are given for each speech frame at time n and
for the lth mel-scale filter, Vl[ωk] and l = 1, . . . , L , as

e[n̂, l] =
Ul
∑

k=Ll

|Vl[ωk]Φ(S[n̂,ωk])| (17)

where L is the total number of filters, and Ll, Ul denote
the lower and upper frequency indices respectively over
which each filter is non-zero.

5) At the last step, the DCT of the log magnitude of
the filter outputs for each frame is computed to form
TEMFCC[n̂,ωk], i.e.,

TEMFCC[n̂,ωk]
k=1,...,Nc

=
1

L

L
∑

l=1

log(e[n̂, l]) cos

(

k(l − 0.5)

L

)

(18)

Figure below is a flow-diagram describing the computation of
TEMFCCs. The proposed method is also compared with the
MFCC feature parameters and the T-MFCC features parame-
ters. The T-MFCCs features employ TEO in the time domain
(compared to TEMFCCs that employ TEO in the frequency
domain). Next we briefly explain T-MFCC.

s[n̂] DFT Φ(·)
Mel

Spectrum
Sub
band
energy

log DCT TEMFCC

A. T-MFCC parameters
T-MFCCs feature parameters were developed for language-
identification (LID). LID refers to the task of identifying an
unknown language from the test utterances. The computation
of T-MFCCs for a signal s[n] requires the following steps:
1) The same as step 1) of TEMFCC computation.
2) Next we calculate the Teager-energy of s[n̂]:

Ψ(s[n̂]) = s2[n̂]− s[n̂− 1]s[n̂+ 1]

3) The magnitude spectrum of Ψ(s[n̂]) is computed and
warped to Mel-frequency scale, multiplied with a mel-
filterbank(Fig. 2).
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TABLE II
BERLIN EMOTIONAL SPEECH DATABASE

Emotion Number of utterances
Anger 127
Happiness 71
Neutral 79
Sadness 62
Disgust 46
Fear 69
Boredom 69
Total 535

4) For each filterbank output of DFT{Ψ(s[n̂])}, Ψ1[l], the
DCT of the log of their magnitudes is computed to form:

T-MFCC[n̂, k]
k=1,...,Nc

=
L
∑

l=1

log(Ψ1[l]) cos

(

k(l − 0.5)

L
π

)

(19)

where T-MFCC[n̂, k] is the kth T-MFCC among Nc.
Figure below is a flowchart diagram describing the computa-
tion of T-MFCCs.

s[n̂] Ψ(·) DFT Mel
Spectrum

Sub
band
energy

log DCT T-MFCC

IV. EXPERIMENTAL FRAMEWORK
We explore the robustness and compare the performance of the
proposed TEMFCC features to that of MFCCs and TEMFCCs
by artificially injecting two types of noise to the speech signal
and then computing their recognition accuracy.
The Berlin Emotional Speech Database (EMODB) [2],

is used for simulation. EMODB is a recorded database of
emotional utterances spoken by actors (i.e, simulated speech
utterances). This database contains recordings, sampled at
16KHz, from 5 actors and 5 actresses, 10 different sentences of
7 kinds of emotions: anger, boredom, disgust, fear, happiness,
sadness, and neutral are record (Table II). We have created
the “EmoDB+Noise” by adding pink and white noise to the
test set of EmoDB database where samples are distorted with
white and pink noise respectively at SNR levels of 0, 10, 20,
30, 40, and 50dB.
We performed speaker-independent emotion recognition and

the score reported for each feature is the average of five sep-
arate experiments. In each experiment, the speech utterances
of a pair of speakers formed the testing set for the classifier
while the remaining utterances formed the training set. The
pairs were selected in order to include one male and female
speaker at a time (Table III).
For every utterance endpoints are detected and the silent part

was removed. Then the signal was divided into frames. The
samples of each frame were weighted using hamming window
to reduce the spectral leakage. The frame size used was 25.6

TABLE III
TESTING AND TRAINING SETS

Male speakers Female speakers
03, 10, 11, 12, 15 08, 09, 13, 14, 16
Experiment no. Training set Testing set

1 10, 11, 12, 15, 09, 13, 14, 16 03, 08
2 03, 11, 12, 15, 08, 13, 14, 16 10, 09
3 03, 10, 12, 15, 08, 09, 14, 16 11, 13
4 03, 10, 11, 15, 08, 09, 13, 16 12, 14
5 03, 10, 11, 12, 08, 09, 13, 14 15, 16

msec with 50% overlap between frames. Every speech frame
is represented by three feature vectors:

• 12 MFCC coefficients
• 12 TEMFCC coefficients
• 12 T-MFCC coefficients

excluding the 0th cepstrum coefficient c0 and augmented with
their 1st and 2nd time derivatives. The number of filters in the
triangular Mel-filterbank used to extract the features vectors
was 29.
One of the key advantages of using differential parameters,

such as delta cepstrum or delta-delta cepstrum, is that the
differencing operation removes the effect of simple linear
filtering on the parameter values, thereby making them less
sensitive to channel shaping effects that might occur in a
speech communication system. These frames are then clas-
sified into emotional states according to the maximum a
posteriori probability (MAP) rule and the emotional class
where the test signal belongs is the class where the majority
of its frames belongs to.
Gaussian mixtures models (GMMs) were used to estimate

the probability density function (pdf) of feature vectors in
each emotional state. One problem we are faced when using
GMMs for classification is how to choose the number of
mixture components M . The CLUSTER software package
has been used to automatically estimate model parameters
from feature vectors representing speech frames. CLUSTER
is an unsupervised algorithm for GMM estimation that is
based on the expectation-maximization algorithm (EM) and
the minimum description length (MDL) criterion [1].
Table IV presents the recognition rates for white and pink

noise respectively. The greatest values are emphasized with
bold fonts. In the case of white noise and SNR values less than
or equal to 30dB, TEMFCCs have the best performance. As

TABLE IV
RECOGNITION ACCURACY

SNRdB

Noise 0 10 20 30 40 50
MFCC White 0.16 0.19 0.38 0.54 0.63 0.62

Pink 0.14 0.23 0.50 0.60 0.62 0.62
TEMFCC White 0.22 0.30 0.46 0.58 0.59 0.59

Pink 0.16 0.34 0.52 0.59 0.59 0.59
T-MFCC White 0.10 0.13 0.24 0.38 0.49 0.50

Pink 0.11 0.22 0.31 0.45 0.490 0.49
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Fig. 3: Correct classification rate in the presence of (a) white and (b) pink noise for MFCC, TEMFCC, and T-MFCC

TABLE V
AVERAGE RECOGNITION RATES (%)

Feature
MFCC TEMFCC T-MFCC

Noise White 0.42 0.46 0.31
Pink 0.45 0.47 0.34

the SNR values increase, MFCCs exhibit better performance.
T-MFCCs have the overall lowest recognition rate in the case
of white noise throughout all SNR levels. In the case of pink
noise the results are quite similar, i.e., TEMFCCs have the
best performance for values lower than 25dB, while MFCCs
perform better than TEMFCCs and T-MFCCs as SNR values
increase. As in the white-noise case, T-MFCCs have the overall
lowest recognition rate in the range [0dB, 50dB] certifying that
TEO in frequency domain provides better representations of
non-linear variations of energy than in time domain. Figure 3
is a graphical representation of Table IV. Table V shows the
average performance of MFCC, TEMFCC, and T-MFCC in
presence of additive white and pink noise. It is observed that
the average performance of TEMFCC features is better than
MFCC, and T-MFCC features in additive noise environment.

V. CONCLUSIONS
In this paper we addressed the implementation of an automatic
emotional-state recognition system capable of working in
noisy environments, using cepstral features extracted from
an audio signal. The proposed TEMFCC features have been
shown to be more robust than MFCCs and T-MFCCs in
white and pink noise environments for low SNR values. For
clean conditions and white noise the TEMFCCs performed
similarly to the MFCCs. T-MFCCs have the lowest recognition
accuracy. The experiments were carried out using the EMODB
speech corpus. The increased robustness of TEMFCCs is due

to fact that TEO performs a demodulation-like operation and
the envelope of the spectrum produces more robust features,
but the physical interpretation of applying the TEO after the
Fourier transform should be further investigated.
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