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ABSTRACT

We investigate the use of facial depth data of a speaking sub-
ject, captured by the Kinect device, as an additional speech-
informative modality to incorporate to a traditional audio-
visual automatic speech recognizer. We present our feature
extraction algorithm for both visual and accompanying depth
modalities, based on a discrete cosine transform of the mouth
region-of-interest data, further transformed by a two-stage
linear discriminant analysis projection to incorporate speech
dynamics and improve classification. For automatic speech
recognition utilizing the three available data streams (audio,
visual, and depth), we consider both the feature and decision
fusion paradigms, the latter via a state-synchronous tri-stream
hidden Markov model. We report multi-speaker recognition
results on a small-vocabulary task employing our recently
collected bilingual audio-visual corpus with depth informa-
tion, demonstrating improved recognition performance by the
addition of the proposed depth stream, across a wide range of
audio conditions.

Index Terms— Audio-visual automatic speech recogni-
tion, depth information, multi-sensory fusion, linear discrim-
inant analysis, Microsoft Kinect.

1. INTRODUCTION

Introducing the visual modality to the task of automatic
speech recognition (ASR) has been repeatedly shown in the
literature to improve ASR accuracy and robustness to audio
noise, aiming towards more natural, speech-based human-
machine interaction [1, 2]. Typically the incorporated visual
speech information is extracted from traditional planar video
data of the speaker’s facial region, captured in the visible
spectrum. Few only datasets and experimental results have
been published that deviate from this paradigm, by utilizing
some sort of 3D information from the speaker’s face. Such
are, for example, the Australian English speech data corpus
(AVOZES), where stereo cameras are used for video record-
ing [3], the WAPUSK?20 database recorded with a Bum-
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blebee stereo camera [4], and the in-car Spanish database
AV @CAR, where the subject’s image is captured from six
different angles in order to reconstruct a 3D textured mesh
of the speaker’s face [5]. In this paper, we also deviate
from the traditional visual stream paradigm, by incorporating
facial depth data, captured by a novel multimodal record-
ing device, the Microsoft Kinect. In particular, we build
on prior work [6], where we described the collection of a
small-vocabulary bilingual audio-visual corpus with depth
information (BAVCD) employing the Kinect, to investigate
the use of such data to the problem of audio-visual automatic
speech recognition (AVASR). Our approach leads to a multi-
sensory, multimodal ASR system, where speech information
extracted from the audio, visual, and depth data streams is
fused to yield utterance transcripts. To our knowledge, this
constitutes the first such effort in the AVASR literature.

An important aspect of the effort is related to extract-
ing speech informative features from the visual and depth
streams. For this purpose, various feature selection and data
transformation techniques have been adopted from the liter-
ature, where various schemes have been proposed, such as,
for example, the use of genetic algorithms for feature selec-
tion and principal component analysis for feature transforma-
tion [7]. In our approach, we employ appearance based fea-
tures, obtained from the discrete cosine transform (DCT) of
the mouth region-of-interest. A straightforward feature selec-
tion method of the resulting DCT coefficients is the use of
feature energy as a measure of information content [8]. Ac-
cording to this technique, features with higher energy values
over time are more informative, and thus their selection based
on energy sorting can be effective. The process is further fa-
cilitated by the use of linear discriminant analysis (LDA) that
has been observed to benefit automatic speechreading per-
formance [8, 9]. In our work, LDA is applied both within
each frame and across temporally adjacent feature frames to
capture dynamic speech information discriminatively. Fur-
thermore, this two-stage LDA is also applied on the depth
data, after appropriately mapping the tracked mouth region-
of-interest from the traditional video to the depth data stream.
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Figure 1: Proposed multi-modal ASR system overview.

The rest of the paper is structured as follows: Details
about the data acquisition of the BAVCD database are pre-
sented in Section 2. In Section 3, the system architecture is
described, as well as the visual front-end, statistical speech
modeling, and fusion. Section 4 is devoted to our experi-
ments, and, finally, Section 5 concludes the work.

2. THE BAVCD DATABASE

The database used in our experiments is the “Bilingual Audio
Visual Corpus with Depth information” (BAVCD), consist-
ing of connected digit utterances in both English and Greek
[6]. More specifically, its English part, used here, contains
approximately 4.5k connected digits from 15 speakers, and
its Greek part contains approximately 2k connected digits.
The devices employed in capturing the data were a Mi-
crosoft Kinect, a Canon Vixia HF100 HD camera, and a
Zoom H4 sound recorder. The MS Kinect is a novel device,
mainly used to control videogames through gesture recogni-
tion. Its design is based on the PrimeSensor device [10], and
it can capture both VGA resolution video, as well as depth
images at the same resolution. In order to acquire the latter,
the Kinect utilizes a laser, an IR camera, and the structured
light methodology [11]. The effective range of the depth
camera is 0.7m-6m, but its depth resolution decreases with
increasing object distance. Therefore, in our experiments the
Kinect was placed at approximately 0.9m from the speaker’s
face. The data streams captured by the Kinect were 640x480
pixel, 24-bit RGB at 20 fps color video, and 640x480 pixel,
11-bit at 20 fps depth information. The audio was captured by
the Zoom sound recorder, which incorporates a pseudo X/Y
condenser microphone configuration that exhibits nearly uni-

form directionality and flat frequency response. The device
yielded two tracks of 16-bit, 44.1 kHz, PCM encoded audio.
Finally, note that the recorded HD camera video stream was
not used in our experiments.

All data were collected at the Vision Capture and Human
Tracking Laboratory of the Computer Science and Engineer-
ing Department at the University of Texas at Arlington. The
recording environment offered controlled illumination, clean
acoustics, and a solid blue background, simplifying somewhat
the face detection and tracking task.

3. SYSTEM ARCHITECTURE

Our system consists of the visual front-end implementing the
region-of-interest (ROI) detection, the feature extraction and
transformation module, and the statistical ASR module for
model training and testing on features fused across all data
streams. A system overview is depicted in Fig. 1. The mod-
ules are described in more detail in the following.

3.1. Visual Front-End

Our visual front-end module is based on the Viola-Jones al-
gorithm for ROI detection. The approach employs AdaBoost,
using cascades of weak classifiers to achieve high detection
performance [12]. In particular, we applied the method on the
planar visual data stream in a nested fashion, first employing
one detector to localize the face in each video frame, and sub-
sequently another detector to localize the mouth region within
the face. In addition, we used a smoothing scheme by median
filtering the mouth bounding box coordinates over ten neigh-
boring frames. This way, the influence of false detections was
minimized, yielding more robust tracking. The resulting co-
ordinates were also used for locating the mouth region in the
depth images, by adjusting the coordinates according to the
disparity of the two sensors. The final ROI for both video and
depth images was obtained by resizing the respective mouth
bounding boxes to 64 x 64 pixels.

3.2. Feature Extraction

Following ROI extraction, the next step is to obtain a small
number of meaningful features, adequately capturing the
speech information present in the lip movements. To do so,
we employed an appearance-based approach, applying the
discrete cosine transform (DCT) on the mouth ROI image
extracted from each video and depth frame [8]. We then
considered the DCT coefficients in the upper-left corner of
the transformed image, having higher energy values and thus
capturing more lip movement information. The number of
coefficients we extracted with this method was 45 for every
frame. We then interpolated the features from 20 Hz to 100
Hz, in order to match the audio feature extraction rate (see
below).

2715



-

Neighboring
l frame
concatenation
DCT Image
64 X 64

45 features

A 4

1st and 2nd
{ Interpolation y— de;’i‘:iet‘;ves
31

Figure 2: Feature extraction and selection pipeline used in our
system for the visual (shown here) and depth data streams.

In order to improve feature selection, we implemented the
two-stage LDA based approach depicted in Fig. 2, similarly
to [9]. Specifically, at the first stage, we applied LDA on the
45 features of each frame (“intra-frame”) selecting d < 45
features with the highest eigenvalues. Subsequently, at the
second stage, we concatenated j neighboring feature vectors
at each side to the vector of the current frame, in order to
capture dynamic visual speech information. We then applied
LDA (“inter-frame”) to the concatenated vector of dimension
(27 + 1) d, selecting of course a smaller number of features
1 with the highest eigenvalues. Finally, we calculated their
first and second order temporal derivatives, appending them
to the feature vector, thus yielding features of dimensionality
3. For the planar visual data stream, values d = 10, j = 3,
and ¢ = 10 were chosen, whereas for the depth data stream
values d = 15, j = 6, and ¢ = 10 were preferred. In both
cases, the final features were of dimension 37 = 30.

Concerning the audio features, we calculated the Mel-
frequency cepstral coefficients (MFCCs) and their first and
second derivatives on windowed speech segments of 25 ms
duration and 10 ms overlap. The length of the audio feature
vector was 39.

3.3. Statistical ASR

Hidden Markov models (HMMs) are broadly used in ASR
applications for modeling speech. The Baum-Welch algo-
rithm is used for training the models and the Viterbi algorithm
for recognition [13]. In our experiments, we compared the
performance of two types of models, baseline single-stream
HMMs (i.e., employing feature fusion) and state-synchronous
multi-stream HMMs (two- and tri-stream HMMs, i.e., a deci-
sion fusion approach). The latter constitutes an early integra-
tion form of decision fusion, where the fused data observation
likelihood is expressed as the product of the observation like-

Visual front-end Video Depth
Energy based feature selection | 36.91% | 18.20%
Intra-frame LDA 41.51% | 19.28%
Intra- and inter-frame LDA 43.60% | 20.72%

Fusion approach Video + Depth

Single-stream HMM 41.29%

Two-stream HMM 44.39%

Table 1: Word recognition accuracy, %, at various stages of
the visual and depth data processing pipelines (upper table),
as well as for the single- and two-stream HMMs, when using
video and depth information (lower table).

lihoods of each stream, raised to exponents that express the
reliability of each particular stream. In total, thirty context-
dependent phonetic models were employed (triphones), each
having three states in a left-to-right topology and four Gaus-
sian mixtures per observation stream and state. The hidden
Markov model toolkit (HTK) [13] patched with the HTS soft-
ware [14] was used for training and testing. A free grammar
was used at decoding (i.e., no constraints to the length of the
recognized digit sequence were imposed).

4. EXPERIMENTS AND RESULTS

In this section we present the experiments conducted in or-
der to test the effectiveness of our system. In the experiments
we used the audio, planar video, and depth streams of the
BAVCD database. More specifically, we used the English
data from 14 subjects in a random 2/3, 1/3 split for training
and testing, respectively, to conduct multi-speaker ASR ex-
periments. In order to test our system for robustness under
the influence of noise, we corrupted the audio samples with
additive babble noise from the NOISEX-92 database at sev-
eral signal-to-noise ratios (SNRs). Clean audio though was
used for model training. As already mentioned, all data utter-
ances were connected digit sequences. The vocabulary size
was 11, as both “zero” and “oh” were used for digit “0”.

The first set of experiments presents the effects of using
the depth stream in conjunction with the video stream, as well
as the beneficial effects of feature transformation using the
two-stage LDA. More specifically, from the data in Table 1
it is obvious that two-stage LDA improves performance not
only compared to the energy based feature selection method,
but also compared to intra-frame LDA alone. Furthermore,
depth information does improve accuracy when compared
to video-only recognition. Finally, the use of multi-stream
HMMs improves significantly the ASR accuracy, when com-
pared to baseline feature fusion (single-stream HMMs).

The second set of experiments considers the effects to
ASR of fusing the planar video and/or depth data with the tra-
ditional audio stream. In Fig. 3 we compare the performance
of audio-only ASR to decision fusion based ASR employ-
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Figure 3: Connected digits speech recognition performance,
measured in word accuracy, %, employing audio-only, audio-
visual, audio-depth, and audio-visual-depth data, considered
at various audio SNR levels. All stream combination results
are obtained using decision fusion (DF), with the exception
of the audio-visual-depth system, where feature fusion (FF)
results are also depicted.

ing two-stream audio-visual HMMs, two-stream audio-depth
HMMs, and three-stream audio-visual-depth models. From
the results we can see that depth information is beneficial to
ASR performance, especially for medium and low SNR val-
ues. We can also observe (in the case of audio-visual-depth
based ASR) that decision fusion yields significant improve-
ments over the baseline single-stream HMMs (feature fusion).

5. CONCLUSIONS

We have presented a novel multimodal speech recognition
system that uses facial depth information, captured by the
Kinect, in addition to the audio and video modalities, in or-
der to boost ASR performance and robustness to noise. A
two-stage LDA was applied to the visual and depth features,
first intra- and subsequently inter-frame, resulting in a consid-
erable increase in recognition accuracy. The depth modality
improved ASR performance over audio-only and traditional
audio-visual systems, when incorporated into them under the
multi-stream decision fusion framework. It is our belief that
this benefit will be further increased in future work by im-
proving feature extraction in the depth data stream.
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