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ABSTRACT
In this paper, we consider the problem of quantifying changes
in the perceived quality of audio by directly measuring
the brainwave responses of human subjects using a high-
resolution electro-encephelogram (EEG). Specifically, human
subjects are presented with audio whose quality varies with
time while being monitored by a 128-channel EEG; some
of the time, they move a slider bar up and down to indicate
their perception of the changing quality while at other times
they listen passively. Our focus here is to identify low-level
features in the brainwave responses that correlate well with
temporal quality variations across multiple base audio se-
quences and different test subjects with our ultimate goal
being to implement a classifier based on such features. The
results presented here attempt to quantify the quality classi-
fication performance versus the perceptual uncertainty of the
subjective data. We find that the proposed approach is much
more effective in estimating the perceptual quality for one
of the two distortion types considered, frequency truncation,
than it is for the other type, scalar quantization.

Index Terms— Audio quality assessment, perceptual
quality, EEG, brainwave analysis

1 INTRODUCTION
Interest in analyzing how humans perceive audio goes

back many years. The groundbreaking work of Flechter in the
early 1940s led to the first detailed understanding of the spec-
tral sensitivities of the auditory system [1], although it was
not until Johnston developed his perceptual noise masking ap-
proach in the 1980s that such concepts were incorporated into
a compression algorithm [2]. While human subjects can only
consciously rate variations in perceived audio quality to an
accuracy of about 1 second, evidence from the neuroscience
community suggests that the brain responds to changes in
audio stimuli much more rapidly. The first low level process-
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ing of auditory information begins as soon as information
from the ears reaches the primary auditory cortex, probably
on the order of 10-20ms post-stimulus onset. In a variety
of different experimental scenarios, it has been found that
changes in an audio signal induce changes in the brainwave
responses of human subjects in time intervals ranging from
25 to 100 ms [3, 4, 5, 6, 7, 8]. This is important because if we
wish to create temporally-dynamic computer-based models
of audio perception that have sufficient resolution for coding
and transmission applications, we must be able to validate
them subjectively. Thus, it should be possible to extrapolate
subjective opinions provided by test subjects over longer time
intervals to much shorter time frames by identifying common
precursors embedded within the EEG waveforms.

2 EEG ANALYSIS APPROACH
The Active-2 EEG collection system that we used in these

trials captures data from 128 electrode channels and samples
it at a rate of 1024 Hz. Thus, for each trial we have a very
large multidimensional dataset from which we are attempt-
ing to extract signals corresponding to changes in the human
perception of audio quality. Innumerable approaches are pos-
sible from the simplistic—monitoring only changes in alpha
wave rhythms [9]—to the highly complex—evaluating phase
synchronization behavior amongst widely separated portions
of the brain [10]. In this early research, we have chosen an
approach based on time-space-frequency analysis of the EEG
waveform set. This approach is motivated by the qualitative
results for one test subject that are shown in Figure 1. Here,
we have plotted space-frequency energy maps comparing the
brain responses (with the frequency computed over a three
second interval) of a single test subject to impaired and ref-
erence audio. Over the time interval selected, the impaired
audio being presented to our subject was bandlimited to 5.5
kHz. An average reference was used here, an FIR lowpass
filter with a cutoff frequency of 80 Hz was applied, and indi-
vidual EEG channels from four different presentations of the
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test and reference audio were spectrally averaged. Studying
Figure 1, one notes that the spatial energy distributions at 6
and 15 Hz are considerably different for the two cases while
the differences at 32 Hz are more subtle. Of particular inter-
est is a significant shift in positive (red) power from the left
posterior hemisphere, including primary auditory areas, to the
posterior right hemisphere processing at 6 Hz, signaling less
reliance on routine processing in auditory areas and recruit-
ment of less defined evaluation areas. Beta (15 Hz) activity
evidences an even more pronounced rightward shift, now ac-
companied by a recruitment of right analogs of left linguistic
processing areas, as is often seen in non-linguistic or abstract
auditory comprehension. Simultaneously, the left negativity
(blue) around Brocaõs region for linguistic perception, seen
in the reference condition, has disappeared in the impaired
condition as presumably the subjects are in a less rote linguis-
tic and auditory processing mode for the impaired audio. In
short, this preliminary data is consistent with what might be
expected as quality degradation impairs routine processing:
subjects are using mechanical auditory processing in the ref-
erence condition and shift to a less defined, less constrained,
and more global evaluation, typical of right hemisphere.
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Fig. 1. Space-frequency energy map for reference (a) and
impaired (b) audio

Based on these observations, we formulate feature vec-
tors for an EEG-based audio quality classification algorithm
as follows. First, for each 5 second time interval of constant
audio quality we form 12 128x1 vectors, each containing the
power in one of 12 spectral bands (2 Hz to 24 Hz in 2 Hz
steps) at the 128 different electrode positions. The set of
feature vectors is illustrated in Figure 2. A 1024-point non-
overlapping short-time Fourier transform is applied and the
spectral power is calculated over each 5 second interval of
constant audio quality by averaging. Thus, when taken to-
gether our set of 12 feature vectors represents the time-space-
frequency distribution of the EEG signal power and it should
be able to capture the qualitative differences seen in Figure 1.

3 SUBJECTIVE TESTING METHOD-
OLOGY

The facility used to conduct the human subjective trials
was purpose built for EEG research and consists of an RF
shielded testing chamber and a 128-channel Active-2 EEG

Fig. 2. Feature vector set corresponding to a given time inter-
val.

collection system featuring preamplifiers constructed directly
on the electrodes for increased environmental noise immu-
nity. Monaural audio sequences are presented to participants
under computer control with subjects being able to repeat any
given trial as many times as desired until they are satisfied
with their quality scoring (only the final score is retained).
Perceived variations in audio quality are input by the subject
to the computer via a sliderbar and real-time synchronization
markers are embedded with the captured EEG signals by the
system. Each trial takes about one hour per test subject (not
including preparation and cleanup time) and generates about
5G bytes of data with each of the 128 spatial channels being
sampled at 1024 Hz. Three 30 second base sequences were
used to create all of the test sequences, each of which was
formed by applying one of two different forms of distortion
(frequency band truncation or quantization) with each having
3 possible impairment levels and one of two time-varying dis-
tortion patterns. Multiple presentations of both the impaired
test sequences and the unimpaired reference sequences were
made in a randomized fashion. Finally, subjects do not use
the sliderbar to rate the distorted test sequences approximately
two-thirds of the time and it is these unrated sequences that we
use here for our analysis so that the motor cortex responses do
not overwhelm the fainter signals of interest. The results pre-
sented in this paper are based on data collected from only five
test subject and thus must be considered to be highly prelimi-
nary.

4 CLASSIFIER DESIGN
Feature vectors are created using the time-frequency-

space approach outlined in Section 2. A block diagram of
the complete system is illustrated in Figure 3. In this fig-
ure, the preprocessing steps applied to the 128 signals are
average referencing following by FIR lowpass filtering of
each electrode waveform to a 50Hz bandwidth. Average ref-
erencing was selected based on analysis presented in [11]
proving that this is as effective as any other referencing ap-
proach for high-resolution EEG data while the 50Hz cutoff
frequency was chosen based our own subjective analysis of
the time-space-frequency data. The next two blocks in Figure
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Fig. 3. Block diagram of EEG-based audio quality classifier.

3 implement the feature extraction process as previously de-
scribed in Section 2 while the Mperceptron training process
and the implementation of the resulting linear discriminant
process are described below.

The Mperceptron tool described in [12] uses the perceptron-
learning rule to train a linear machine (multi-class linear
classifier) on the extracted feature vectors. The ‘perceptron
criterion’ error function used by this tool minimizes the num-
ber of misclassifications, and the approach has the advantage
that it will find a separable partitioning of the training set data
if one exists. While we also evaluated the effectiveness of
k-Nearest Neighbor and neural network-based classifiers over
the course of this study, we found that the Mperceptron-based
approach performed the best. An iterative stochastic gradient
descent algorithm is applied to the error function, resulting in
the optimal weight matrix W. The multi-class problem is then
transformed into a single-class one using the Kessler’s con-
struction. The final result of Multi-class perceptron training
algorithm is a model W and a bias vector b.

In order to fairly evaluate classification performance, we
partition our data set into separate training and testing sets.
We do this as follows: every degraded and reference audio

sequence is presented to each subject four times in the passive
listening state. We use the EEG data generated by three of
these presentations as training data while the 4th is used as
testing data to generate the results presented in Section 5.

Actual classification is performed using the Linclass tool
which is also part of the Statistical Pattern Recognition Tool-
box described in [12]. This tool accepts test data vector i and
outputs class decision Y(i) according to

Y (i) = argmax
y

(W′(:,y)X(:, i)+b(y))) (1)

based on the model that resulted from the application of the
Mperceptron algorithm to each specific training set where X(:
, i) is the 128x1 single-frequency spatial test vector for time i
(e.g., a single column from Fig. 2). Because we know here
that only four different levels of audio quality were used in
these tests, we constrain our classifier to have only four possi-
ble output classes, each corresponding to a quality level: low
(L), medium (M), high (H), and full (F) (i.e., undegraded ref-
erence audio). While the real-world problems we are trying to
address lack such a priori constraints, we felt that it was im-
portant to limit the problem as much as possible in this early
work in order to maximize our chances of finding potential
quality indicators buried within the EEG data sets.

Finally, note that a separate linear classifier (e.g., Equa-
tion (1)) is designed for and applied to each 128x1 frequency
vector in Figure 2 for each time interval. Thus, we get 12
classification decisions for each interval. To make a final de-
cision, the mode (or median) of these 12 decisions is selected.
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Fig. 4. Probability of correct detection versus the perceptual
uncertainty in the quality rating for the two different distortion
patterns.

5 RESULTS
The results achieved using the Mperceptron-based quality

classification approach for a set of test cases are summarized
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Fig. 5. Probability of correct detection versus the perceptual
uncertainty in the quality rating for distortion types Scalar
Quantization and Frequency Truncation.

in Figures 4, 5, and 6. In these figures, we plot the proba-
bility that the classifier selects the correct quality class rela-
tive the ‘perceptual uncertainty’ in the quality ratings. This
‘perceptual uncertainty’ allows us to accept an incorrect deci-
sion made by the classifier as a correct decision if the per-
ceptual ratings giving by the individual participants to the
same segments of the same base audio sequences are suffi-
ciently close together. The baseline subjective quality ratings
were collected twice from each subject for every degraded
and reference audio sequence using the sliderbar as discussed
in Section 3. This percentage difference is calculated in the
following manner. For each 3 second interval over which
the audio quality was held constant (technically, the middle
3 seconds of a 5 second interval of constant quality) and each
specific degraded temporal segment of a specific base audio
sequence, we calculate that participant’s average quality rat-
ing. We then difference this from the quality rating given by
the same subject to the same temporal segment of the same
audio sequence which was presented at full (reference) qual-
ity. We do this to compensate for the fact that the participant
may have heard things that were part of the reference audio
sequence which he or she thought were degradations. This
reference-normalization of the ratings data is applied to all of
the quality classes, each subject, and each segment of audio
separately. For example, for the segment from seconds 6 to
9 of the Pat Benatar sequence (labeled ‘S’ in Figure 6), we
might have reference-normalized average quality ratings of
51 for ’low’, 55 for ’medium’, and 75 for ’high’. If the true
class quality for a given trial is ’low’ but our classifier selects
’medium’, then we will still declare a correct classification if
a perceptual uncertainty of 5% is allowed. This corresponds
to the case in Figure 6 where the value on the x-axis is 5. On
the other hand, if in the same example, the classifier selects
’medium’ but the actual quality was ’high’, we would need
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Fig. 6. Probability of correct detection versus the perceptual
uncertainty in the quality rating for the three different base
audio sequences.

to increase the perceptual uncertainty to 20% for this to be
considered a correct classification decision.

In Figure 4 we plot correct classification versus percep-
tual uncertainty for the two different distortion patterns, d1
and d2, considered separately as well as for the combination
of the two. Data from all of the test subjects, for all of the
individual trials, over both distortion types, and all three base
sequences is used here with the classifier being designed with
and tested on orthogonal data sets. From the plot, we note that
our classifier appears to be approximately 10% more accurate
for distortion pattern d2 than for d1 across the uncertainty
levels—this would appear to be a significant improvement.
The distortion patterns for d1 and d2, respectively, are (full,
low, high, medium, low, full) and (full, medium, low, high,
medium, full) where each quality level is held constant for 5
seconds and 1 second transitions are used. It is not clear to us
at this time why there would be such a large difference in de-
tection probability for these two distortion patterns, and it will
probably be necessary to perform additional trials in which
every time interval of audio is degraded to all three levels of
impairment in order to fully understand this phenomenon.

Figure 5 performs the same comparison over the entire
data set (separating again the test and training data) but com-
pares results for the two types of distortion used. From the
plot, it is very clear that our quality classifier is far more ac-
curate for frequency truncation distortion than it is for scalar
quantization. This is not particularly surprising. One notes
that our classification approach was inspired by the obser-
vations and neuroscientific discussion presented in Section 2
which specifically refer to time-space-frequency energy dis-
tributions seen in the frequency truncation case. Similar time-
space-frequency plots for the scalar quantization case have
not been as easy to analyze. Consequently, it is quite possible
that the feature vector set proposed here is not well suited to
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the scenario in which audio is degraded by scalar quantiza-
tion noise. Note that in the degraded audio presented here,
scalar quantization was performed in the MDCT-domain uni-
formly across all frequencies (frequency truncation was also
performed in this domain).

The plot of Figure 6 compares the results for the three
different base audio sequences over the complete data set
but with the test and training sets partitioned as before. We
note that the approach appears to be most effective for the
Michelle Branch sequence (labeled ‘H’) and less effective,
at least for low levels of perceptual uncertainty, for the Pat
Benatar sequence (labeled ‘S’). For the third sequence Ode
to Joy (labeled ‘O’), our classifier appears to do well for low
levels of perceptual uncertainty but does not improve very
quickly as the allowable level of uncertainty is increased.
These differences are probably related to the relative amounts
of higher frequencies contained in the three base audio se-
quences (given that most of our classification accuracy ap-
pears to be derived from the effectiveness of the approach
with respect to the frequency truncation): sequence ‘H’ ap-
pears to have a lot of relatively high power, high frequency
harmonics while sequence ‘S’ appears to have very limited
high frequency content. In sequence ‘O’, the impairment
introduced by frequency truncation is far more subtle than for
the other two sequences; it is therefore possible that subjects
having more familiarity with classical music may be able to
more readily identify (and more highly penalize) the impaired
audio than the other subjects in the pool.

6 CONCLUSION
In this paper, we have considered the application of EEG

for the purpose of evaluating the human perception of audio
quality, considering in particular scalar quantization and fre-
quency band truncation. Our work thus far has been highly
preliminary and clearly incomplete—the proposed approach
appears to be promising for frequency truncation distortion
but less so for scalar quantization. Furthermore, the variations
in its effectiveness for different audio sequences and different
distortion patterns need to be more fully analyzed, and data
for more test subjects needs to be considered. Finally, we
believe that the feature vector set can be pruned and the ef-
fectiveness of the resulting classifier consequently improved
by determining exactly which electrodes are and are not con-
tributing information that is relevant to the audio quality clas-
sification problem. We feel that principle component analysis
(PCA) methods applied in the spatial domain may be helpful
in accomplishing this task.
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