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ABSTRACT 

In acoustic and network echo cancellation, the detection of 
doubletalk and echo path channel changes are important to 
the control of the echo canceller’s adaptive filter.  This 
paper investigates joint doubletalk and channel change 
detection from an M-hypotheses test perspective. Also, using 
a stationary Gaussian stochastic input signal model, we 
propose a doubletalk versus channel change detection 
algorithm based on the likelihood ratio test. This proposed 
detection algorithm intuitively has a dynamic threshold 
which is based on the probabilities of past doubletalk and 
echo path change detection outputs. Simulation results prove 
the efficiency of the proposed detection algorithm.* 

Index Terms— Channel change detection, doubletalk 
detection, acoustic echo cancellation, hypothesis testing, 
likelihood ratio test. 

1. INTRODUCTION 

Acoustic echo cancellation (AEC) is used to remove the 
undesired echo in hands-free communication, and it is 
usually done by modeling the echo path impulse with an 
adaptive filter and subtracting the estimated echo from the 
microphone output signal. The far-end signal � �x n is filtered 

through the room impulse response � �nh  to get the echo 

signal � �y n . 

� � � � � � � � � �Ty n x n h n n n� � � x h  (1) 
where 

� � � � � �( ) 1 1
T

n x n x n x n L� � � �� 	
 �x ��������� , (2) 

� � � � � �0 1 1
T

h h h L� �� 	
 �h �h������� , (3) 

and L is the length of echo path. This echo signal � �y n  is 

added to the near-end signal � �v n  and noise � �w n  to get 
the microphone signal, 
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 � � � � � � � � � �Td n n n v n w n� � �x h  (4) 

The estimated echo signal � �ŷ n  is the output of the 

adaptive filter � �ˆ nh  as 

 � � � � � � � � � �ˆ ˆˆ * Ty n x n h n n n� � x h  (5) 

We define the residual echo signal � �ê n  as 

 � � � � � � � � � � � �ˆˆ ˆ Te n y n y n y n n n� � � �x h  (6) 
and considering the near-end signal, the observed error 
signal � �e n  is 

 
� � � � � � � �

� � � � � � � �
ˆ

ˆ      T

e n d n y n v n

d n n n v n

� � �

� � �x h
 (7) 

Traditionally, the doubletalk and channel change 
detection are used to control the adaption of the filter. The 
doubletalk detection (DTD) algorithm decides whether there 
is near-end speech in the microphone signal and freezes the 
adaptation of the modeling filter when near-end speech is 
present [1]. However, many doubletalk detectors declare 
doubletalk during channel changes, and freeze the 
adaptation of the filter when it most needs to adapt. Thus, 
another efficient detection algorithm is needed to detect 
channel change – a channel change detector [2]. According 
to different adaption strategies during doubletalk and 
channel change, it is important to differentiate between them 
[3] [4]. In this paper we will analyze the adaptive control of 
the filter update from a hypothesis test perspective and then 
propose a new doubletalk versus channel change (DTCC) 
detection algorithm based on the likelihood ratio test (LRT). 

This paper is organized as follows:  Section 2 derives 
the detection scheme of doubletalk and channel change 
based on the M-hypothesis testing. Section 3 proposes our 
doubletalk versus channel detection statistic. Simulation 
results are presented in Section 4. Finally, we draw 
conclusions in Section 5. 
 

2. ADAPTIVE CONTROL FROM THE M-
HYPOTHESIS TEST PERSPECTIVE 

 
In our simplified model of an acoustic echo canceller there 
are only three states that effect adaptation: far-end-only-
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active, doubletalk and channel change in the echo path. It is 
natural that we could view this as a kind of M hypotheses 
( 3M � ) detection problem, in which we define the 
following hypotheses: 

H0:  far-end active only, 
H1:  doubletalk is occurring, 
H2:  a channel change has happened. 

According to the M-Hypothesis Bayes test [5], with an 
observation vector z, we define the following likelihood 
ratios: 
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We denote the cost for the nine possible courses of action as 
C00, C10, C20, C01, C11, C21, C02, C12, and C22. The first 
subscript indicates the state chosen, and the second, the state 
that was true. We have the following decision rules [5] 
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in which 0P , 1P  and 2P  are the priori probabilities of H0, 
H1, and H2. 

The costs listed above are not all the same. This is due 
to the different adaptive strategies at doubletalk and channel 
change. When there is doubletalk, the filter needs to 
immediately freeze the coefficient update of the filter, 
meanwhile, when the channel changes, the adaptation should 
accelerate. So, the cost of declaring doubletalk as channel 
change should be high, because it might cause the 
divergence of the filter. The cost of declaring channel 
change as doubletalk is also high since this kind of error will 
significantly decrease the tracking ability of the filter.  

Next, we will discuss how to define the costs and 
simplify the detection rule in (11)-(13). According to the M-
Hypothesis Bayes test principle, the overall goal is to 
minimize the total cost. For the application of echo 
cancellation, the final target of adaptive control is to have an 
optimal estimate of the real echo path impulse response. In 

general, according to the normalized least mean square 
(NLMS) based adaptive algorithm [6], we have 

 � � � � � � � � � �
� � � �

ˆ ˆ 1 T

n e n
n n n

n n
�

�
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�
x
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 (14) 

In practice, we usually have the following variable step 
size strategy. Based on the detection output of doubletalk 
and channel change detection, we update the filter in both 
far-end and channel change state, but we use a smaller step 
size at far-end than channel change, i.e. we will have a larger 
step size when channel change is detected. Meanwhile, we 
use a step size near zero when doubletalk is detected. 
Therefore, we have  
 1 0 2ˆ ˆ ˆ0 1� � �� � � �  (15) 

However, considering our state definitions, there are no 
channel changes during the “far-end” state. Meanwhile, 
there may be background noise, so the ideal step size for far-
end should be zero as with doubletalk. At the same time, 
when there is channel change, we’d like to update as quickly 
as possible, therefore we choose.  
 1 0 20, 1� � �� � �  (16) 
It is reasonable that the cost function should be related to the 
difference between the used ˆi�  and correct step size j�  due 
to the detection error of doubletalk and channel change. We 
propose to define the cost Cij  as follows 

 ˆCij i j� �� �  (17) 
Therefore, the overall target of the hypothesis test is to 

minimize the total step size error. The definition of the cost 
function in (17) is direct and what’s more important is that 
this definition could simplify the hypothesis test decision 
rules in (11)-(13).  Based on the assumptions in (15) and 
(16), we could analyze the relation between the costs as 
follows.  
 10 00 20C C C� �  (18) 
 22 02 12C C C� �  (19) 
 11 01 21C C C� �  (20) 
Considering (18), (19), and (20) ,  we could simplify (11)-
(13) as follows, 
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Meanwhile, due to the definition of the cost in (17), it should 
be noted that we have 
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Finally, substituting (24) and (25) into (21)-(23), we 
observe that that all we need for the so-called doubletalk 
versus channel change (DTCC) detection statistic is 

� � � �
2

1

0 1
2 1

2 2

H

H

P P
P P

�� � ��z z  (26) 

Since H0 and H1 have the same effect ( � is made large), we 
can further simplify the decision in (26) by combining the 
H0 and H1 states into H1 simply by letting 0 0P � , 

� � � �
2

1

1
2 1

2

H
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P
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�� ��z z  (27) 

It should be noted that this reduces to a binary hypothesis 
test � �3� z  with a dynamic threshold 1 2P P , 

� � � �
� �

2

1

1 21 11 1
3

2 12 22 2

H

H

P C C P
P C C P

��� ��
�

z  (28) 

which means that based on the assumption of (15) and (16) 
we could minimize the step size error (see (17)) based on the 
DTCC detection in (28). Meanwhile, we automatically get a 
dynamic threshold which is very useful, since many 
detection methods suffer from the choice of a fixed 
threshold in practice.  

3. PROPOSED DTCC 

There is a DTCC detection algorithm proposed in [3] [4], 
however it is based on the two-path model. In this section, 
using a similar approach, we use � , Td y�z  as the 
observation vector and derive our proposed LRT detection 
statistic for doubletalk and channel change detection. 

3.1. Multiple-sample LRT 

We take the following two-sample observation 

� � � � � � � � � �, 1 , , 1
T

n d n d n y n y n� � �� 	
 �z  (29) 
and assume that there is no channel change between these 
two samples. Assuming the probability density function 
(PDF) of far-end and near-end signal are both stationary 
zero-mean and Gaussian distributed, the joint PDF of � �nz  
is a zero-mean Gaussian vector such that 

�  � �2| 0,i ip H N � 20� i�0,�z ��  (30) 

where 2i�� , i=1, 2, is the 4 4�  matrix 
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in which 1h is the echo path impulse response at doubletalk 
and 2h is impulse response at channel change. We define 
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and 
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The log LRT (LLRT) is expressed as [5] 
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The first part of this LLRT is 
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Meanwhile, the second part is 
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It should be noted that the above analysis could be 
generalized to the case where more samples are available. 
Therefore, in general, the K-sample LLRT is 
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in which 
 � � � � � �2 2 2 21 ... 1y n y n y n K� � � � � � �y  (41) 
and 
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3.2. Practical implementation 
 
In practice, however, the detection statistic in (40) is not 
available to us, and we have to consider a practical 
implementation using estimators. In general, we could use 
the estimations 
 2 2

yK� y  (43) 
and 
 � �2 2 2

w vK � � �v w+  (44) 
   
in which 2

y�  and 2 2
w v� ��  are the power of the real echo and 

near-end speech and noise. According to the near-end signal 
energy estimator (NESEE) in [7], we could estimate 

2 2 2ˆn w v� � �� �  as 
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in which 2ˆe�  and 2ˆ x�  are the estimation of error and far-end 
power, respectively. The statistic, êXr  is the correlation 
between far-end and error signal. Meanwhile, use 

2

2
y�  for 

2
y�  and estimate it using the near-end energy as 
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A simple way to estimate the noise power 2
w�  is to 

calculate the noise power 2ˆw�  during the silence period of far 
end and microphone signal, 
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In order to estimate 
1

2
y� , we assume there is no channel 

change at doubletalk. Then, we estimate the echo from the 
output of the adaptive filter, which is estimated echo, 
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Then, we have the practical DTCC as follows: 

 

� �

2

1

2 2 2 2 2
ˆ

2 2
ˆ ˆ

2 2 2
1

2 2
2

ˆ ˆ ˆ ˆ ˆ
ln

ˆ ˆ2

ˆ ˆ ˆ
ln ln

ˆ ˆ2

d n y d n

y y

H
n w n

H
w w

K

PK
P

� � � � �
� �

� � �
� �

� �� � � ��� �� � �� �� �� �� �
� �� �� �� �� � �� �� �� �� �

 (49) 

Finally, we could utilize the past detection output to get a 
dynamic estimation of the priori probabilities of 1P  and 2P .  

We argue that our proposed detection statistic in (49) is 
an ideal detection for doubletalk and channel change as 
follows.  In order to simplify the analysis, we assume 

1 2P P� , then the threshold is 1 2ln / 0P P � . When there is no 
channel change, we have 2 2 2

ˆˆ ˆ ˆd n y� � ��  , and 2 2 2
ˆˆ ˆ ˆd n y� � �� "  

when channel change occurs. Meanwhile, when there is no 
doubletalk, we have 2 2ˆ ˆn w� � , and 2 2ˆ ˆn w� ��  when double-
talk occurs. Therefore, we could easily prove that our 
detection statistic is larger than zero when there is channel 
change without doubletalk and smaller than zero when there 
is doubletalk without channel change. When there is both 
doubletalk and channel change, considering that the near-
end speech energy is much larger than noise, we could still 
keep our detection statistic smaller than zero even with 
considerable channel change, which is desirable.  

It should be mentioned that, compared to the two-path 
model method in [3] [4], our proposed method works in the 
normal single-path echo cancellation scheme and has a 
dynamic threshold. 
 

4. SIMULATION RESULTS 
 
In our simulation, we use speech sampled at 8 kHz for far-
end and near-end speech and a L=512-sample room impulse 
response. The total length of the signal is about 100,000 
samples and we simulate the channel change by increasing 
the gain of channel by 2 at sample 33,000.  Near-end speech 
occurs between samples 50,000 and 70,000. Plots of the far-
end, near-end, microphone and error signals are shown in 
Figure 1. 

It should be mentioned that the performance of the 
practical implementation in (49) depends on the 
performance of the near end energy estimator. There should 
be a good match between the estimated and real near-end 
speech powers even during the period of channel change. 
Considering that the NESEE and other estimators are not 
perfect, we have to smooth the detection statistic to make it 
stable. We plot the smoothed value of our proposed 
detection statistic and its dynamic threshold in Figure 2. We 
see that the proposed detection statistic detects doubletalk 
robustly and is not disturbed by the channel change. 

Traditionally, in order to objectively evaluate the 
performance of the detection statistic, we use the receiver 
operating characteristic (ROC) [8] [9]. Considering that our 
proposed detection statistic automatically has a dynamic 
threshold, we could not get a ROC curve by sweeping a 
fixed chosen threshold. Therefore, we verified the ROC 
curve of our proposed detection statistic with different levels 
of near-end to far-end energy ratio (NFR) as shown in 
Figure 3.  

We see that the probability of declaring doubletalk as 
channel change increases when the near-end energy becomes 
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small. This is partially because when the near-end speech is 
small it is easily confused with noise. However, this is not 
serious because when the near-end energy is small, it will 
not damage the adaption of filter seriously, which is 
acceptable. However, when the near-end speech is large, we 
have very good doubletalk detection with a small error 
probability of declaring echo path channel change as 
doubletalk. 

 

 
Fig.1 Speech signals in our simulation. 

 
Fig.2 The proposed detection statistic and threshold. 
 
 

5. CONCLUSION 
 
In this paper, we first analyzed the joint doubletalk and 
channel change detection from the M-hypothesis testing 
perspective and then proposed our new doubletalk versus 
channel change detection statistic which includes a dynamic 
threshold. Simulation results showed that the proposed 
detection statistic could detect doubletalk robustly and is not 
disturbed by the channel change. 

 

 
Fig.3 ROC with different levels of near-end energy 
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