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ABSTRACT
The 3D imaging community has begun a transition to full-
waveform (FW) LIDAR systems which image a scene by
emitting laser pulses in a particular direction and capturing
the entire temporal envelope of each echo. By scanning a
region, connected 1D profile waveforms of the 3D scenes can
be readily obtained. In general, FW systems capture more
detailed physical information and characteristic properties of
the 3D scenes versus conventional 1st and 2nd generation
LIDARs which simply store clouds of range points. Unfor-
tunately, the collected datasets are very large, making tasks
like processing, storage, and transmission far more resource-
intensive. Current compression approaches addressing these
issues rely on collecting large amounts of data and then an-
alyzing it to identify perceptual and statistical redundancies
which are subsequently removed. Collecting large amounts
of data just to discard most of it is highly inefficiently. Our
approach to LIDAR compression models FW return pulses
as signals with finite rate of innovation (FRI). We show in
this paper that sampling can be performed at the rate of in-
novation while still achieving good quality reconstruction.
Specifically, we show that efficient sampling and compres-
sion can be achieved on actual LIDAR FW’s within the FRI
framework.

Index Terms— LIDAR, full-waveform, finite rate of in-
novation, compressive sampling, sparsity.

1. INTRODUCTION

In general, third generation pulsed LIDAR systems project
an energy pulse into a scene and measure the reflected full
waveform (FW) signal. Each of these reflected signals pro-
vides range measurements of the objects intercepted by the
laser pulse along a specified direction. By scanning through a
specified region using a series of emitted pulses and observ-
ing their reflected FW signals, connected 1D profiles of 3D
scenes can be readily obtained. The advantages of 3rd gen-
eration LIDAR over conventional 1st and 2nd generation sys-
tems that store only 3D range point clouds is that the shapes
of the waveforms provide additional insight into the surface
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structure which can provide improved characterization and
classification. Unfortunately, massive amounts of data have
to be collected to obtain detailed topographical information
about a scene which in turn poses problems for processing,
storage and transmission. To resolve these issues, a number
of compression approaches have been developed in the liter-
ature. They generally require, however, the initial acquisition
of large amounts of data only to later discard most of it by
exploiting redundancies [1], thus sampling very inefficiently.
Our main goal is thus to apply efficient and effective com-
pressive sampling algorithms that can be implemented with
low computational complexity on FW LIDAR systems.

During the last few years, the theory of compressive sam-
pling was introduced, reminding us all that the Nyquist rate
is a sufficient but not a necessary condition for signal re-
construction. Within this framework, a signal that is inher-
ently sparse in some domain can be sampled very efficiently
with rates depending on the sparsity of the signal. Here, we
explore this idea by considering FW echoes as signals with
finite rates of innovation; thus, our approach compresses a
scene by compressively sampling temporal FW signals. In
2010 [2] we applied this concept to simulated FW LIDAR
signals to determine the complexity of received waveforms.
In the process, we found that very precise FW reconstruc-
tions can be achieved using a sampling rate that depended on
the FW signal innovations. However, the previously proposed
model did not account for non-symmetrical waveform returns
typically present in large footprint pulsed LIDAR. Here, we
extend the work in [2] by incorporating a model to account
for non-symmetrical waveform shapes and use it to compres-
sively sample and reconstruct actual FW LIDAR signals.

2. LIDAR DATA

2.1. Full-waveform signal descriptions

Third generation LIDAR systems typically emit a pulse to-
wards a particular location to extract the ranges by measur-
ing the return echoes. This emitted pulse may cause multi-
ple echoes from intercepting objects laying along the conical
3D volume traversed by the pulse. By sampling the echoes,
which we also refer to in here as modes, one extracts a record
of the interactions of the emitted pulse with the intercepted

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 984



objects. We refer to the temporal envelope of the complete
echo return pulse as the full-waveform (FW) signal.

Each of the modes appearing in the FW signals corre-
sponds to reflections from a single object or from a super-
position of several intercepted objects. The shape of each of
these echoes may not be the same as that of the emitted pulse.
For example, a mode might be skewed and/or its width elon-
gated when the pulse hits a surface whose orientation is not
normal to the flight direction of the pulse. In addition, FW’s
generated by large footprint pulses are more likely to exhibit
non-symmetrical and more complex mode shapes in compar-
ison to those corresponding to smaller footprint areas [3].

The problems of compression or processing (e.g., clas-
sification) generally require the models for the FW signals.
Optimal waveform modeling is not straightforward, however.
The number of modes is unknown, and a given mode’s shape
might be controlled by the sum of echoes from multiple ob-
jects. Typical approaches that have been proposed are based
on Gaussian curve fitting [4]. Unfortunately, the symme-
try of Gaussian curves does not preserve the shape of the
skewed and non-symmetrical modes that may be present in
the FW echoes. In [3] the authors proposed the use of a
marked point process to fit generalized Gaussian, Nakagami
and Burr curves since it can model symmetric and skewed
modes. Unfortunately, the larger set of curves available in-
creases the number of parameters that needs to be found, thus
increasing the complexity of the computation. For this rea-
sons, we instead apply an FRI-based model that approximates
FW signals with high quality and yet can be applied effi-
ciently with low computational complexity.

2.2. LIDAR dataset

The LIDAR dataset obtained from NAVAIR China Lake, CA
was collected using the VISSTA ELT LADAR system. The
shot rate of the system is of 20 Khz (i.e, pulse emission rate).
Each time a pulse of 1.5 ns duration at full width half maxi-
mum is transmitted. Echoes are measured at a sampling rate
of 2Ghz and quantized using an 8-bit A/D converter. The
used dataset was collected by imaging a pickup truck through
a chain link fence, both positioned perpendicular to the pulse
transmission path. To illustrate this more clearly, Figure 1
shows the 3D point cloud obtained by processing the FW sig-
nals collected by the system.

Fig. 1. An example of the LIDAR point cloud.

Table 1. Non-uniform linear spline approximation
Number of waveforms NMSE NMAE

1000 1e-3 3.87e-4

3. FULL-WAVEFORM MODEL

Based on the aforementioned descriptions, we model FW sig-
nals as the sum of a bandlimited and a non-uniform linear
spline. The bandlimited component of the signal describes
the general signal level while the non-uniform linear spline
models the multiple return modes that result when objects are
intercepted by the laser pulse. We chose this model to pre-
serve the shape of FW signals, a matter of significant impor-
tance to the analyst in determining the physical properties and
characteristics of the intercepted objects.

To obtain the nonuniform linear spline approximation of
the modes, we first determine the parts of the signal with am-
plitudes larger than an appropriate predefined threshold value.
This value is selected so that FW noise is not considered as
false modes. After the peaks of the modes are selected, we
then determine the support of each mode by detecting the
sample numbers at which the FW signal experiences a zero
crossings. The resulting segments of the signal are considered
to be the modes and are approximated using non-uniform lin-
ear splines. The order of the spline is selected to be one which
we have found provides an approximated signal of sufficiently
high quality. Splines of higher order such as quadratic and cu-
bic could also be selected, however, but we have not done so
here because the approximation gain achieved was not sig-
nificant. The bandlimited part of the signal is determined by
restricting the signal to a predefined bandwidth and has been
selected based on observations of the FW signals.

To illustrate the performance of this process, we approx-
imate a FW signal and plot the result in Figure 2a where the
entire signal is made positive. Figures 2b and 2c are the same
approximations zoomed in around the two extracted modes.
Note that the model preserves the shape of the signal with
good perceptual quality. The residual noise resulting from the
subtraction of the approximation from the FW signal resem-
bles white noise. Thus, FW signal is effectively modeled by a
bandlimited plus linear spline signal buried in white noise.
To validate our model, we apply it to a total of one thou-
sand FW signals and compute the resulting overall normal-
ized mean squared error (NMSE) and the overall normalized
maximum absolute error (NMAE). These metrics are com-
puted only over the portions of the FW signal considered as
modes. Normalizations are applied to these metrics such that
the highest possible values are one. The results are shown in
table 1. Note that the resulting errors are overall very small,
thus validating its usage for modeling FW signals.
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(a) Full-waveform approximation

(b) Mode 1 (c) Mode 2

Fig. 2. Full-waveform linear spline approximation.

4. FULL-WAVEFORMS AS A SIGNAL OF FINITE
RATE OF INNOVATION

4.1. Review of signals with Finite Rates of Innovation

The concept of FRI developed in [5] essentially states that
signals with a finite number of degrees of freedom 2K per
unit of time τ can be sampled efficiently at a rate greater than
or equal to the rate of innovation ρ = 2K/τ . At the heart of
this framework are signals of length τ that can be represented
by the ak weighted stream of K Diracs given by:

x(t) =

K∑
k=1

= akδ(t− tk). (1)

The non-bandlimited signal x(t) is fully specified by K loca-
tions tk and weights ak. As such, if we can somehow observe
information relating to these signal parameters, we can then
sample very efficiently at a rate much lower than the Nyquist
rate and still achieve high quality reconstruction. The method
of retrieving the signal parameters starts by observing that the
Discrete Fourier transform (DFT) coefficients of (1) are given
by

X[m] =
1

τ

K∑
k=1

ak exp
−j2πmtk/τ . (2)

Observe that with the form of (2), all the 2K signal parame-
ters required to completely determine (1) can be determined
with just 2K + 1 contiguous DFT coefficients X[m]. This
system of equations is nonlinear in the coefficients tk and can

be solved using the annihilating filer method [5]. In general,
the annihilating filter with coefficients H[m] for |m| ≤ K is
one that annihilates K exponentials (i.e., H[m] ∗X[m] = 0).
Under this constraint, the zeros of the filter coefficients which
occur at ej2πmtk/τ determine uniquely (under an appropriate
transformation) the locations tk. The fact that only 2K + 1
contiguous DFT coefficients X[m] are required enables one
to sample uniformly using the sinc function of bandwidth B
to obtain the measurements

yn = 〈x(t), sinc(B(nT − t))〉 (3)

for n = 1, 2, ..., N , with DFT coefficients

Y [m] =

{
τX[m] if |m| ≤ bBτ/2c

0 for other m ∈ [−N/2, N/2]. (4)

Note that with a bandwidth of B ≥ ρ, all of the required
coefficientsX[m] are still kept by using only 2K+1 samples
yn and can thus be used to find locations tk. Using (4) now
changes the annihilating filter convolution to H[m] ∗Y [m] =
0. This operation can be recasted by arranging the coefficients
Y [m] into a Toeplitz matrix as

A=


Y [−L1] Y [−L1−1] ··· Y [−L]
Y [L1+1] Y [−L1] ··· Y [−L+1]

...
...

...
...

Y [L−1] Y [L+2] ··· Y [−L1−1]

 (5)

and computing the vector H of DFT coefficients H[m] for
which A · H = 0. The coefficient index in (5) is chosen
to fit the selected FW signal model, where L = L1 + L2.
In the noiseless case, one can always chose values of L1 =
0 and L2 = K to retrieve the locations tk. We leave these
quantities as variables at this point and define their require-
ments for the reconstruction of signals modeled by (7) buried
in noise in the following subsections. Once the tk’s have been
found, the weights ak can be obtained by usingK of the sam-
ple values obtained from equation (3) to construct a Vander-
monde matrix and applying least squares.

4.2. Non-uniform splines

A signal x(t) is a non-uniform spline of degree R with knots
at tk if its (R+1)th derivative is given by the stream of Diracs
x(R+1)(t) =

∑K
k=1 = akδ(t− tk) with DFT coefficients

XR+1[m] =

(
j2πm

τ

)R+1

X[m],m ∈ Z (6)

In this form, non-uniform splines of degree R can be sam-
pled at or greater than the rate of innovation using the same
procedure described in section 4.1 for streams of Diracs to
obtain an accurate reconstruction of the signal x(R+1)(t). Af-
ter recovery of this signal is achieved, a simple R + 1 times
integration suffices to reconstruct x(t).
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4.3. Cadsow’s denoising

Ar low SNR, Cadsow’s denoising can be applied for improve
performance. In general, this algorithm takes advantage of the
fact that sampling at a rate higher than the rate of innovation
results in a matrix A of dimensions larger than the rank K.
As such, we can force the smallest L2 − K singular values
to zero, obtain the corresponding low rank approximation A′

and average the coefficients along the diagonals to reconstruct
the Toeplitz matrix. This process is then repeated iteratively
until the ratio of the K + 1 and K singular values is less than
some threshold value. The number of iterations required to
denoise is usually small (less than ten) [6].

4.4. Full-waveforms as FRI signals

We adopt the model described in section 3 to approximate
FW signals. Thus, in general the continuous signal x(t) is
modeled as

x(t) = xbl(t) + xmodes(t) (7)

where xbl(t) is the bandlimited portion and xmodes(t) is the
part pertaining to the modes of the FW signal. Sampling and
reconstruction of signals that can be modeled by a bandlim-
ited plus a non-uniform splines was proposed in [7] within the
FRI framework. Here, we follow their procedure to obtain re-
constructions at or above the rate of innovation. We begin by
computing the DFT coefficients of (7) given by

X[m] =

{
Xbl[m] +Xmodes[m] if |m| ≤ L1

Xmodes[m] if L1 < |m| ≤ L
(8)

where L1 is the bandwidth of xbl(t), L2 ≥ K is the number
of knots used for the spline approximation and L = L1 +L2.
The algorithm for sampling and reconstruction of FW signals
can be then summarized as follows:

• Sample x(t) at a rate of 2L/τ and find 2L contiguous
DFT coefficients Y [m].

• Use the coefficients in (8) corresponding to L1 <
|m| ≤ L to construct the Toeplitz matrix given in (5).

• Apply Cadzow’s denoising if low SNR.

• Obtain the locations tk and weights ak of x(R+1)
modes(t) by

applying the annihilating filter method.

• Integrate x(R+1)
modes(t) R+ 1 times to recover xmodes(t).

• Compute Xbl[m] = X[m]−Xmodes[m] for |m| ≤ L1

to obtain xbl(t) and use equation (7) to recover x(t).

5. RESULTS AND DISCUSSION

We measure the performance of our algorithm on several FW
signals acquired using the system described in section 2.2.
Because the important portion of the FW signal for the an-
alyst is xmodes(t), we measure performance only over the

Table 2. FRI reconstruction of FW with 26dB SNR
K NMSE NMAE CR (%)

Resolution 1 10 0.35e-3 0.144 99.4
Resolution 2 20 0.027e-3 0.054 99.1
Resolution 3 35 0.027e-3 0.053 98.7
Resolution 4 52 0.0031e-3 0.0178 98.2

support of the modes. One of the metrics used to asses the
performance is the NMSE given by

NMSE =
1

γ1
‖xmodes[n]− x̂modes[n]‖22 (9)

where γ1 = | supp(xmodes[n])| ·‖xmodes[n]‖22 and x̂modes[n]
is the FRI estimation. In addition, the NMAE given by

NMAE =
1

γ2
max(|xmodes[n]− x̂modes[n]|) (10)

where γ2 = max(xmodes[n]) is also used as a metric of per-
formance. The normalizations carried out in equations (9) and
(10) were selected so that the highest possible values NMSE
and NMAE are one. In addition, we assess the compression
efficiency using the compression ratio (CR):

CR = (1− 2L+ 1

Nf
) · 100% (11)

where L and Nf denote the number of compressive samples
and the number of Nyquist samples, respectively.

An example applying the FRI approach to sampling and
reconstruction is shown in Figure 3. On this real FW ob-
tained from the dataset described in subsection 2.2, we per-
formed sampling and applied the method described in section
4.4 with Cadsow’s denoising for reconstruction. Since the
rate of innovation is generally unknown, we assume values of
K = 10, 20, 35 and 52. Reconstructions using these values
results in FW signals of varying resolution. Performance re-
sults for the FW signal with an SNR of 26dB is summarized
in table 2. Note that both the NMSE and NMAE are very
small even in coarse resolutions. However, the morphology
of the mode is not well preserved. To illustrate this, figure 3b
shows the zoomed version of the FW signal at the mode. In
this figure, the real FW signal and its corresponding recon-
structions are shown for resolutions obtained with values of
K = 10 and 52. Note that the reconstruction correspond-
ing to the coarsest resolution loses a few of the peaks in the
mode. As computed in table 2, there is a deviation of as much
as 14.4% from the true FW value. Even at higher resolutions,
however, a very high compression ratio is achieved. The re-
construction corresponding to K = 52 is also shown in Fig-
ure 3. This reconstruction preserves the morphology of the
true FW signal with two being perceptually indistinguishable.

Summarizing, we found that high quality reconstructions
which preserve FW morphology can be achieved by consid-
ering FW’s as signals of finite rates of innovation. Within this

987



(a) Full-waveform (b) Mode 1

Fig. 3. Full-waveform FRI reconstruction.

framework, we have achieved effective sampling by acquir-
ing samples at or above the rate of innovation ρ. In general,
high compression ratios are achieved at the cost of small er-
rors. In the FW signal example with SNR = 26 dB, a CR
in the range of [98 − 99%] achieved with NMSE’s as high
as 0.35e-3. Thus, these results show that we can efficiently
sample FW signals at the rate of innovation and achieve very
precise reconstructions.

In addition, we have found also that we can achieve dis-
tinct resolutions by changing the sampling rate. A higher
innovations number K implies that we increase the rate of
innovation ρ accordingly. The higher the sampling rate, the
larger the number of samples that we collect thus increas-
ing the number of estimated knots used in the linear spline
approximation. An increased number of knots improves the
resolution of the reconstruction, thus refining the NMSE and
Nmax at the cost of decreased compression ratio. Fortunately,
we found in this research that very precise reconstructions can
be achieved at low innovation numbers (e.g K = 61 overall)
for the dataset described in subsection 2.2.

Finally, in [2] the authors used a moment-based FRI
method to determine FW complexity characterizations as nu-
meric estimates of the scene complexity. The intended use for
these characterizations was to determine, on the fly, a number
of FW scans that need to be randomly collected across the en-
tire 3D scene to achieve acceptable reconstruction quality for
the entire range map. In fact, such a number was theoretically
determined in [8]. The approach, was applied successfully
on simulated data by using the number of innovations K as a
measure of complexity. Application of the method described
here to estimate FW complexity on real data is straightfor-
ward. The more complex morphology of the modes and the
higher number of modes implies that a larger K is required
to achieve a pre-specified reconstruction quality threshold.
Thus, as in [2], the number of innovations K can be used to
obtain FW characterizations of the scene complexity

6. CONCLUSION

In this paper, we studied the problem of efficient sampling
and compression of FW in 3rd generation LIDAR systems.

The approach implemented to address this important issue is
based on considering FW’s as signals with finite rates of in-
novation. This is made possible by modeling the FW signal
as the sum of a bandlimited signal and linear non-uniform
spline. The first finding of this paper shows that we can ef-
fectively model FW signals in this manner. After appropriate
modeling, the FRI procedure was applied to efficiently sam-
ple and reconstruct real FW signals under certain resolution
constraints imposed by K. The performance metrics show
that we can achieve high resolutions by sampling only about
2% of the samples one would typically acquire at the Nyquist
rate. In short, we show that we can efficiently and effectively
sample FW signals and still achieve precise reconstructions
which preserve signal morphology at very low rates.
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