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ABSTRACT

This paper proposes an extension of total variation (TV) im-
age deconvolution technique that enhances image quality over
classical TV while preserving algorithm speed. Enhancement
is achieved by altering the regularization term to include di-
rectional decompositions before the gradient operator. Such
decompositions select areas of the image with characteristics
that are more suitable for a certain type of gradient than an-
other. Speed is guaranteed by the use of the augmented La-
grangian approach as basis for the algorithm. Experimental
evidence that the proposed approach improves TV deconvolu-
tion is provided, as well as an outline for a future work aiming
to support and substantiate the proposed method.

Index Terms— Total variation, augmented Lagrangian,
image deconvolution, image restoration, directional decom-
positions.

1. INTRODUCTION

Image deconvolution/restoration is a classic inverse problem
that has been extensively studied in the literature. In such
problems, one aims to recover a clean, sharp image from a
noisy, blurred and/or degraded observation. The challenge of
most inverse problems is that they are ill-posed, i.e., either
the direct operator does not have an inverse, or it is nearly
singular. Thus, regularization is required to deal with noise
and ensure a unique solution [1].

Since its introduction in 1992 by Rudin, Osher and
Fatemi [2], Total Variation (TV) regularization has been
successfully applied to a variety of deconvolution-related im-
age problems [1]. The success of TV regularization relies
on a good balance between the ability to describe piecewise
smooth images (without penalizing possible discontinuities)
and the complexity of the resulting algorithms [3].

To go on with the idea, let f be a vector representing an
unknown image (to be predicted) lexicographically ordered,
which is observed through the model

g = Hf + η (1)

giving rise to a blurred and noisy image g. The blur operator

Fig. 1. A toy example
showing that classical TV
can be improved by choos-
ing appropriate βx and βy .

Fig. 2. PSNR is maximized
when β is biased towards the
vertical direction.

is represented by H and η is the noise term such that η ∼
N (0, σ2I). We are interested in estimating f given g and H.

To solve (1) we apply the total variation (TV) approach

f̂ = argmin
f

µ

2
‖Hf − g‖2 + TV (f), (2)

where µ is the regularization parameter, TV (f) = ‖Df‖1 is
the anisotropic total variation norm on f and D is the classical
gradient operator such that

Df =

[
βxDx

βyDy

]
f , (3)

with Dx = [−1, 1] and Dy = [−1, 1]T. Here, βx and βy ,
sometimes grouped as β = [βx, βy]

T, are constants that con-
trol the amount of horizontal and vertical regularization, re-
spectively. For instance, if the real image f is expected to
have some “vertical” pattern, i.e. Figure 1, the reconstruc-
tion process should penalize preferably vertical frequencies
by choosing βy > βx.

As an example, we simulated an observation of Figure 1
by blurring it with a 9 × 9 Gaussian kernel with σ = 3 and
adding noise up to BSNR1 = 25dB. Then, we deblurred it us-
ing the approach on (2) for different choices of the regulariza-
tion parameter µ. Figure 2 shows the evolution of the PSNR

1Blurred Signal to Noise Ratio = 10 log (Blurred signal variance / Noise
variance) [dB].

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 1558



Fig. 3. A less simple
toy example. Altering βy
and/or βx does not yield
better PSNR.

Fig. 4. Since the figure has a
mixed pattern, the best result
is achieve using a balanced β.

for some choices of β. The choice β = [0.5, 1.5], based on
previous knowledge about the real image, forces the solution
to have more horizontal than vertical frequency content, re-
sulting in better image quality and higher PSNR.

However, when the real image does not have a prefer-
able frequency pattern, i.e. Figure 3, no PSNR increment is
achieve by altering β, as shown on Figure 4. In this paper, we
address this issue.

This paper is organized as follows: Section 2 reviews pre-
vious work on extending TV deconvolution for images. In
Section 3 we briefly describe the augmented Lagrangian ap-
proach and highlight the characteristics that yields efficient
implementation. Finally, the proposed method is explained in
details in Section 4.

2. RELATED WORK

Many extensions of TV have been reported in the literature
[4]. Most of them [5–7] deals with the staircase effect, namely
the transformation of smooth regions (ramps) into piecewise
constant regions (stairs). Such a phenomenon tends to appear
when trying to reconstruct, say, a piecewise smooth image
(rather than a piecewise constant image) using classical TV.

For this purpose, Chambolle and Lions proposed the use
of a second order variation along with the traditional TV in
[5]. In [6] Chan et al. improved the approach of [5] by con-
sidering texture and structure as separate components of an
image. Stefan et al. used a variable order total variation ap-
proach in [7]. The order is chosen after an edge detection
procedure.

In [8] Farsiu et al. introduced a technique called Bilateral
TV, which they apply to solve a super-resolution problem [9].
Basically, rather than calculating only first-order finite differ-
ences, which is often used to approximate the gradient oper-
ator [2], they use a weighted mean of combinations of hori-
zontal and vertical differences. As a result, not only horizon-
tal and vertical differences are computed, but also diagonal
differences.

Kiriyama et al., in [10], proposed to speed up the Cham-
bolle’s projected method [11] by adding diagonal differences
to the TV regularization term. They reported a reduction in
computational time around 56% (as a result of fewer itera-
tions).

In [12] Karahanoğlu et al. proposed the use of a general
differential operator L instead of the derivative D for 1-D sig-
nal processing. Specifically, L can be tuned according to the
expected signal and the presence of a linear system.

Differently from the previously proposed techniques, our
approach uses directional filters to decompose the image into
directional components. Then, we apply the appropriate gra-
dient operator on each component, thus penalizing only the
undesired directional patterns.

3. AUGMENTED LAGRANGIAN METHOD

The problem in (2) can be solved efficiently using the aug-
mented Lagrangian approach [13, 14]. The idea consists of
introducing intermediate variables u and transforming the un-
constrained optimization problem in (2) into the equivalent
constrained problem

minimize
f ,u

µ

2
‖Hf − g‖2 + ‖u‖1

subject to u = Df .
(4)

The resulting problem is then solved using an augmented
Lagrangian (AL) scheme [13–15]

L(f ,u,y) =
µ

2
‖Hf − g‖2 + ‖u‖1−

− yT(u−Df) +
ρr
2
‖u−Df‖2, (5)

where ρr is a regularization parameter associated with the
quadratic penalty term ‖u − Df‖2, and y is the Lagrange
multiplier associated with the constraint u = Df .

The idea of the augmented Lagrangian method is to find a
saddle point of L(f ,u,y) that is also the solution of the origi-
nal problem (2). To this end, the alternating direction method
of multipliers (ADMM) can be used to solve the following
sub-problems iteratively [14]:

f̂k+1 = argmin
f

µ

2
‖Hf − g‖2

− ŷT
k (ûk −Df) +

ρr
2
‖ûk −Df‖2

(6)

ûk+1 = argmin
u
‖u‖1 − ŷT

k (u−Df̂k+1)

+
ρr
2
‖u−Df̂k+1‖2

(7)

ŷk+1 = ŷk − ρr(ûk+1 −Df̂k+1). (8)

Now, the f -subproblem in (6) has a closed-form solution
and can be efficiently calculated through FFT [14]. The u-
subproblem in (7) can be solved using the shrinkage formula
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Classical TV penalizes vari-
ations over the whole im-
age in vertical (top) and hor-
izontal (bottom circles) direc-
tions. For numbers with same
colour, gradient is zero (null
penalization), whereas differ-
ent colours cause penaliza-
tion. Thus, image patterns
such as stripes are penalized.

Fig. 5. An illustration of gradient calculation in classical TV
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Fig. 6. Gradients applied to image components in the pro-
posed method. Penalization of image features is minimum
since gradient is close to zero.

[16] at very low cost, as well as the y-subproblem in (8),
which consists of a mere update.

4. PRE-FILTERING/DECOMPOSING APPROACH

The algorithm we have just described uses classical TV ap-
proach, where the gradient operator D is applied to all re-
gions of the image (Figure 5). As a consequence, variations
are penalized in all directions.

As observed in Section 1, however, we can improve TV
deconvolution by using a tuned gradient operator. Rather than
using masks to select regions of the image that are better
suited for a certain gradient operator, we will use pre-filters
to perform such a task. The advantage of the proposed ap-
proach is that it maintains the block-circulant structure of the
matrices involved allowing the use of fast algorithms.

Any image f can be decomposed as

f = fx + fy , (9)

where fx represent the “horizontal” content or component of
f and fy “vertical” component. The components fx and fy
are computed as

fx = Bxf and fy = Byf , (10)

where Bx and By are block-circulant matrices with the prop-
erty that I = Bx +By . Therefore,

Fig. 7. Proposed method
(α = 0.5) provides results
comparable to tuned classi-
cal TV restoration for the toy
example of Figure 1.

Fig. 8. For the mixed pat-
tern of Figure 3, the pro-
posed method outperforms
any combination of β in the
classical TV.

Df = D(Bx +By)f (11)

=

([
βxDxBx

βyDyBx

]
+

[
βxDxBy

βyDyBy

])
f . (12)

We observe in (12) that the gradient operators are now
applied to filtered versions of f , though the effect has not
changed due to identity I = Bx +By . Since we want Dx to
operate on the “horizontal” portion of f and Dy on its “verti-
cal” counterpart, we replace βx and βy which yields

D2Df =

([
(1+α)

2 DxBx
(1−α)

2 DyBx

]
+

[
(1−α)

2 DxBy
(1+α)

2 DyBy

])
f (13)

with
0 ≤ α ≤ 1 (14)

α controls the “adaptiveness”. Now, when α = 0 we have
the traditional TV regularization equivalent to βx = βy = 1,
whereas when α = 1, Dx is applied only to Bxf and Dy only
to Byf .

Simulations have shown that the choice of α should take
into account the noise level. When noise is high, for instance,
regularization should be less “adaptive” and setting α close
to 1 will produce poor results. The intuition is that noise cor-
rupts direction patterns, making it hard to select/filter for the
use of a specific gradient in restoration.

Finally, the proposed algorithm is obtained by replacing
Df in equations (4) through (8) by D2Df in (13). Refer to
[17] for algorithmic details.

4.1. Choice of filters

Since we want horizontal and vertical image components, a
straightforward solution is to split the 2-D spectrum in hori-
zontal (|ωx| > |ωy|) and vertical (|ωx| < |ωy|) frequencies
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and define the Fourier transforms of the filters from this par-
tition as

|Bx(ejωx , ejωy )| =


0 if |ωx| > |ωy|
1
2 if |ωx| = |ωy|
1 if |ωx| < |ωy|

(15)

and |By(ejωx , ejωy )| = 1−|Bx(ejωx , ejωy )|. Then, the filters
were designed through Matlab function fwind1, which uses
the window method [18].

Figure 6 illustrates the idea of the proposed method. After
selecting regions of the image with filters, only the appropri-
ate gradient is applied. Thus, image features are minimally
penalized.

Figures 7 and 8 show the PSNR evolution of the proposed
algorithm versus the classical approach for the images on Fig-
ures 1 and 3 respectively.

4.2. 4-direction TV deconvolution

Simulations have shown that the approach we have just de-
scribed is insufficient to enhance TV deconvolution for real
images. We now extend the idea to incorporate diagonal gra-
dients in addition to horizontal and vertical gradients by defin-
ing the following.

The D4D operator in the regularization term becomes

γDxBx

δDyBx

δDwBx

δDzBx

+


δDxBy

γDyBy

δDwBy

δDzBy

+


δDxBw

δDyBw

γDwBw

δDzBw

+


δDxBz

δDyBz

δDwBz

γDzBz




(16)
with

γ = 1 + α, δ = 1− α and 0 ≤ α ≤ 1. (17)

The gradient matrices Dx through Dz perform the differ-
ences defined respectively by the kernels (filter coefficients)

dx =
[
−1 1

]
dy =

[
−1
1

]
(18)

dw =

[
0 1
−1 0

]
dz =

[
−1 0
0 1

]
. (19)

The filters can be easily defined by partitioning the spec-
trum similarly to (15) and are summarized in Table 1. As
observed, the filters are more selective than those defined in
Section 4.1.

Figures 9 through 14 (zoomed-in versions of Cameraman,
Mandrill and Lena, respectively) show real image results of
the proposed 4-direction TV deconvolution algorithm com-
pared to traditional TV deconvolution. Prior to restoration,
the images were blurred with a 9 × 9 Gaussian kernel with
σ = 1.8 and corrupted with noiseN (0; 3× 10−5) (image dy-
namic range is 0 ∼ 1). The parameter α was empirically set
to 0.5.

|Bx| = 0 if |2ωx| > |ωy|, |Bx| = 1 otherwise
|By| = 0 if |ωx| < |2ωy|, |By| = 1 otherwise

|Bw| = 1 if ωx < 2ωy < 4ωx or ωx > 2ωy > 4ωx
|Bw| = 0 otherwise

|Bz| = 1 if ωy < 2ωx < 4ωy or ωy > 2ωx > 4ωy
|Bz| = 0 otherwise

Table 1. Filters for the 4-direction TV deconvolution. Addi-
tionally, |B| = 1/2 on the boundaries for all filters.

Fig. 9. Classical: 83.15 dB Fig. 10. Proposed: 84.23 dB

5. CONCLUSION

In this paper, we proposed and showed results of an exten-
sion of the augmented Lagrangian approach [13, 14] for the
problem of image deconvolution.

We started our development by noting that unbalancing
the amount of horizontal and vertical regularization enhances
classical TV deconvolution if the original image has a pre-
ferred frequency content, although the same is not true for
more complex images.

In order to deal with a wider range of images, we rec-
ognized that different regions of the image require different
regularizations. Rather than using masks to achieve this selec-
tion, we introduced directional decompositions/filters to per-
form this task. The advantage of the latter is that it permits
the use of fast FFT-based algorithms due to block-circulant
nature of matrices involved.

Fig. 11. Classical: 76.92 dB Fig. 12. Proposed: 77.35 dB
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Fig. 13. Classical: 77.74 dB Fig. 14. Proposed: 78.31 dB

Even for high vertical or horizontal images, our method
has advantages because it does not require any previous
knowledge about the image. For classical TV, on the other
hand, one has to set the amount of horizontal and vertical
regularization accordingly to the image.

We presented experiments showing better PSNR and vi-
sual quality of the proposed method over the classical TV
deconvolution, while increasing only slightly computational
complexity.

Future work includes:

• Deduce the decomposition filters from a certain crite-
rion, rather than defining them arbitrarily;

• Provide analytical analyses of our method;

• Study computational complexity increment caused by
increasing number of filters (e.g. more than 4 filters);

• Include a procedure for automatic parameter selection
(parameters µ and α);

• Take advantage of the directional nature of our method
and add an interpolation step/operation for extension to
the problem of super-resolution/interpolation.

6. REFERENCES

[1] M. Bertero and P. Boccacci, Introduction to Inverse
Problems in Imaging, IOP Pub., Bristol, UK, 1998.

[2] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total
variation based noise removal algorithms,” Physica D.,
vol. 60, pp. 259–268, 1992.

[3] J. M. Bioucas-Dias, M. A. T. Figueiredo, and J. P.
Oliveira, “Adaptive total variation image deconvolution:
A majorization-minimization approach,” in Proc. EU-
SIPCO, 2006.

[4] T. Chan, S. Esedoglu, F. Park, and A. Yip, Handbook
of Mathematical Models in Computer Vision, chapter 2
- Total Variation Image Restoration: Overview and Re-
cent Developments, Springer, New York, 2005.

[5] A. Chambolle and P. L. Lions, “Image recovery via total
variation minimization and related problems,” Numer.
Math., vol. 76, pp. 167–188, 1997.

[6] T. F. Chan, S. Esedoglu, and F. E. Park, “Image de-
composition combining staircase reduction and texture
extraction,” J. Vis. Comun. Image Represent., vol. 18,
pp. 464–486, Dec. 2007.

[7] W. Stefan, R. Renaut, and A. Gelb, “Improved total
variation-type regularization using higher order edge de-
tectors,” SIAM J. Imag. Sci., pp. 232–251, Jan. 2010.

[8] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar,
“Fast and robust multiframe super resolution,” IEEE
Trans. on Image Processing, vol. 13, no. 10, pp. 1327–
1344, Oct. 2004.

[9] S. Park, M. K. Park, and M. G. Kang, “Super-resolution
image reconstruction: a technical overview,” IEEE Sig-
nal Proc. Magazine, vol. 20, no. 3, pp. 21–36, 2003.

[10] S. Kiriyama, T. Usui, T. Goto, S. Hirano, M. Sakurai,
and T. Saito, “Diagonal total variation regularization
criterion for fast convergence,” in Proc. ICALIP, Nov.
2010, pp. 1494–1498.

[11] A. Chambolle, “An algorithm for total variation min-
imization and applications,” J. of Math. Imaging and
Vision, vol. 20, no. 1–2, pp. 89–97, 2004.
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