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ABSTRACT 

This paper introduces a new method for automatically com-

pensating the light spot displacement from the normal posi-

tion in laser spot trackers. The method is based on hardware 

implementation of the spiking neural networks which pro-

vides fast response due to real time operation and ability to 

learn unsupervised when they are stimulated by concurrent 

events. To validate this method we implemented in hardware 

a spiking neural network structure able to process the input 

from a photodiode array and to control a positioning system. 

The performance of the neural network that is based on an 

electronic neuron of biological inspiration was tested using 

the output of the photodiode array placed in strait line. The 

results show that the rapport between the energy consumed 

by the spiking neural network and the accuracy in compen-

sating the spot moving on horizontal or vertical directions is 

significantly better than the rapport which is obtainable 

when programmable computing devices solve the same task. 

These results are encouraging to develop low power spot 

tracking system for enhancing the receiving accuracy in free 

space optics or for enhancing the efficacy of the photo-

voltaic systems.  

 

Index Terms— spiking neural networks, tracking de-

vice, associative learning 

1. INTRODUCTION 

The light spot tracking problem was solved in several papers 

using artificial intelligence elements such as fuzzy neural 

networks [1], [2] and [3] or multilayer perceptrons [4]. 

However, despite the multiple approaches of this problem, 

the use of spiking neural networks represents a new method 

for light spot tracking. The advantage of using this type of 

neural networks is that they are able to model high complex-

ity functions in a biomimmetic manner while having very 

low power consume when implemented in analogue hard-

ware. 

Therefore, spiking neural networks are parallel structures 

which use time in information processing and learning [5] 

and [6]. The processing unit of these networks is the neuron 

designed to mimic in the most plausible way the neuronal 

cell behaviour [7]. Several neuron models of biological in-

spiration such as McGregor [8] and Hopfield [9] were de-

veloped to mimic the information processing elements such 

as membrane potential and detection of activation threshold. 

Other models of neurons suitable for software implementa-

tion that mimic the different types of spiking behaviour of 

the biological neurons were developed by Izhikevich [10] 

and [11]. The simulation time of large biologically inspired 

neural networks can be reduced by designing computation-

ally effective neuron models [12], [13], [14] and [15] or by 

implementing dedicated computational systems [16] and 

[17]. However, the lowest response time and power con-

sumption of the neural networks is achieved when these are 

implemented in analogue hardware. Thus, the neural net-

work that is used as processing unit for the tracking device 

presented in this paper is based on a neuron model intro-

duced in [18] and [19]. We use this type of spiking neuron 

that was analyzed in [20] because it is implemented in low 

power analogue hardware and mimics accurately the natural 

mechanisms of associative learning described by neurosci-

entists in [21], [22] and [23].  

NEURAL NETWORK 

For compensating the displacement from the normal posi-

tion of the light receiver, the tracking device should receive 

the data from a photodiode array and control a positioning 

mechanism. The processing unit of the tracking device is a 

spiking neural network that is able to learn by association 

during light spot tracking. For this work, it was implemented 

the analogue spiking neural network and tested its perform-

ance by simulating the activity of the sensors area using a 

microcontroller. 

1.1 The learning mechanism 

The strength of a synapse or connection between two neu-

rons is increased with a factor p  each time the synapse is 

active. We say that the synapse is active when the presynap-

tic neuron sends information to the receiving or postsynaptic 

neuron. If two incoming synapses towards the same postsy-

naptic neuron are concurrently active in a time window pt  

then the strength of the synapses is increased using a factor 

q  [24] and [25]. Throughout this paper it is considered that 

two events are concurrent if they take place in the time in-

terval pt . From the biological point of view, pt is the dura-

tion of the short-term potentiation. The factor p  models the 

posttetanic potentiation contribution to synaptic plasticity 

and q  models the long-term potentiation rate implying that 

qp  .  
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For the neuron model used as processing unit for the track-

ing device the weight variation associated with the posttet-

anic potentiation is described by equation (1), while for the 

long term potentiation the weight varies with the amount 

given by the equation (2). 

 pp eVw  1   (1) 

 qq eVw  2    (2) 

where 1V  and 2V  are two constants given by the  neuron 

model design. During the neuron idle state the synapses are 

depressed with a factor r whose value is significantly lower 

than q [26]. Therefore, if a trained synapse is not activated in 

a long period of time the synaptic weight will decrease to the 

minimum value following the law: 

                           rq eVw  13       (3)   

where 3V is a design dependent constant. 

1.2 The neural network input 

The network receives the input from two areas of photodi-

odes placed like in figure 1. The tracking area (T) of sensors 

is used for light spot tracking while the learning area (L) is 

used for network training.  

 

 

 

 

 

 

 

a)  b) 

 

Figure 1. a) The light sensors areas; b) the spiking neural networks 

that generate the control signals  

This structure allows the neural network to learn to associate 

the effect of the sensors in learning area with the effect of 

neurons in the tracking area starting from the initial condi-

tions presented in the sequel. 

Thus, in figure 1 (a) the sensors UL  and DL  detect the spot 

movement up and down on vertical axis, while the sensors 

LL  and RL   are sensitive to left and right spot displacement 

on horizontal axis.  

1.3 The neural network structure 

The neural network is divided in four principal units that 

receive the inputs for each of the four directions and are able 

to control the positioning mechanism for compensating the 

light spot movement. The structure of the neural network 

modules UPNN  and DOWNNN  for controlling the up and re-

spectively down directions on vertical axis is presented in 

figure 2. The neurons ][iUN ,  and ][iDN  , 3,1i  are the input 

neurons for the sensors iU  and iD , 3,1i  that controls the 

outputs DC  and UC  through the neurons CDN  and respec-

tively CUN . In the same way the sensors UL  and DL  are 

linked with the outputs DC  and UC like in figure 2.  

 

 

 

 

 

 

 

Figure 2.The neural network structures that can be trained to com-

pensate the spot displacement on up and down directions; initially, 

the weights of the synapses that are connected to learning area are 

maximum and the rest of the weights are minimum. 

The structure of the neural modules LEFTNN  and RIGHTNN  

that control the receiver area movements on horizontal axis is 

the same as that presented for vertical axis. Therefore, for 

compensating the receiver displacement on the left and right 

directions, the RC  and LC  outputs are controlled by the cor-

responding photodiodes LL  and iL  respectively, RL  and iR , 

3,1i  through similar synaptic configurations like in figure 

2.  

1.4 Neural network initial state 

The initial synaptic configuration of the neural network al-

lows the sensors UL  and DL  to control a positioning device 

on vertical axis by activating accordingly the outputs DC  and 

UC , while effect of the sensors iU  and iD , 3,1i  position 

mechanism control is null. Thus, before network training the 

synapses LUS  and LDS  are strengthened to the maximum 

value, while the weight of the synapses US  and DS  are set to 

the minimum.  

1.5 Learning phase 

The involved mechanisms in the network learning depend on 

the amplitude of the spot wandering.  

1) If the amplitude is high and the spot reach the learning 

area, the network starts learning by concurrent activation of 

the sensors from the tracking area with the corresponding 

sensor from the learning area. For example, whether the light 

spot is displaced upwards from the centre, the 1U , 2U , 3U  

and UL  photodiodes will stimulate simultaneously the neural 

network strengthening the synapses of the neural path be-

tween iU  and DC . After a number of concurrent activations 

of the photodiode UL  and the sensors from U group, the 

tracking neurons ][iUN , 3,1i  will be able to control the out-

put DC  in the same way like the learning neurons LUN . 

Taking into account that for all four directions the net-

work uses the same operation principles, the groups of pho-

todiodes U, D, L and R take progressively the role of UL , 

DL , LL  and respectively RL  during the training process. 

Therefore, the photodiodes placed in the learning area act 
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like supervisors for the activity of the photodiodes from the 

tracking area. 

2) If the amplitude is lower than the tracking area than the 

network starts learning at a lower rate by posttetanic poten-

tiation when the synaptic efficacy is increased during the 

presynaptic neuron activation. After the neuron weight 1US  

increases above the threshold that makes it capable of acti-

vating CDN , this neuron will strengthen the concurrent acti-

vated synapses, such as 2US and 3US , depending on the spot 

moving amplitude. Therefore, if the spot wandering ampli-

tude is high enough to hit the photodiodes 1U ,  2U  and 3U  

the corresponding input neuron 1UN  will trigger long-term 

potentiation for untrained synapses 2US  and 3US . If the spot 

covers only 1U  and 2U then the LTP will potentiate only the 

synapse 2US . 

Due to the biological plausibility of the neuron model, 

the synapses that are not used are continuously depressed at a 

very low rate. Thus, whether the maximum amplitude of the 

spot wandering is reduced to zero for a period of time longer 

than the duration of the complete synaptic depression, the 

learning process can start again if the spot displacement am-

plitude increases. The synaptic depression ensures that the 

network synaptic configuration is suitable for compensating 

the present patterns of the spot wandering.       

1.6 Positioning mechanism 

The positioning mechanism has to be able to control the sen-

sor area position by moving it on the horizontal and vertical 

axis using two stepper motors. The outputs LC , RC , UC  

and DC  of the neural network generate spikes whose fre-

quency depends on the network activity. By integration of 

these spikes it is obtained the characteristic of the network 

outputs as analogue signals that can be decoded by a motor 

driver. The problem of controlling a DC motor speed using 

spikes was approached in [27] where the spiking neural net-

work was designed in VLSI and implemented in FPGA. Be-

cause the research presented in this paper is focused on the 

implementation and test of an analogue spiking neural net-

work that is able to learn by STP-LTP mechanisms when it is 

stimulated by the output of a photodiode array, the position-

ing device for the tracking system will be implemented dur-

ing future research. 

2. EXPERIMENTAL SETUP 

The learning process is considered to be finished when the 

photodiodes in the tracking area are able to compensate the 

spot wandering without the activity of the sensors in the 

learning zone. For this experiment, we used one neuron con-

nected to every photodiode as presented in figure 2.  

2.1 Preliminary experiment  

In order to test the neural network nonlinearity and learning 

rate when used for compensating the spot movement, it was 

built a preliminary hardware device based on a microcontrol-

ler for generating the neural network input.  

Neural network response 

The microcontroller was programmed to simulate the output 

of the receivers when they are hit by the light spot by keep-

ing a digital signal in high logic level. 

 

a)   b)  

Figure 3. The output of the neural network (upper signal); the mi-

crocontroller output modelling the activity of the U sensor (lower 

signal). 

   

During this period the corresponding input neuron will gen-

erate action potentials like in figure 3. The spikes amplitude 

and duration depends on the synaptic weight and on the 

maximum energy generated by one impulse. For the maxi-

mum synaptic weights of the neural network used in this 

experiment, the spike duration is 60µs and the amplitude is 

1.64mV.    

 Considering that the spot size is constant, the moving 

velocity of the light between the tracking sensors is propor-

tional with the distance between the photodiodes dI. The 

time TI while the spot travels between two adjacent receivers 

decreases if the speed is higher. Thus, by controlling TI and 

measuring the network output energy as well as the time 

lapsed until the network responds, it is possible to evaluate 

the network performance at different spot wandering veloci-

ties. The examples of the network response given in figure 4 

were recorded for photodiode area edge of 3 mm and for TI 

= 25.2 ms. Taking into account dI = 9 mm we obtain the spot 

wandering velocity v=0.36m/s for which we simulate the 

photodiode activity. Therefore, to assess the network ability 

to discriminate between the numbers of concurrently active 

sensors we recorded using an oscilloscope the neural net-

work output.  

 

a)   b)  

Figure 4. a) The simulation of the photodiode activity when the spot 

is moving across the sensors with constant velocity; b) the differ-

ence between the network response when one, two and respectively 

three active network inputs.    

The signals in figure 4 (a) simulate the output of the sensors 

U1, U2 and U3 if the spot passes across them at constant ve-

locity from U1 to U3 and backwards. The upper signal in 

figure 4 (b), represent the neural network input and the 

lower signal is the integrated response of the output neuron 

for three valid configurations of the active inputs. The pre-
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sented results were obtained after the UPNN  neural network 

was trained meaning that each synapse was strengthened 

above the value that allows the presynaptic neurons to reach 

the postsynaptic action potential for the stimulated neurons. 

The image (b) allows measuring of the time lag of about 

30ms between the stimulus onset and the neural network 

response. Also, notice the difference between the network 

output energy when the microcontroller simulates the activ-

ity of one, two or three sensors. The diagram shows that the 

neural network produces higher energy if the spot displace-

ment is higher which means that the neural network acts as 

an auto-regulating mechanism for light spot movement.     

The energy generated by the supervising neuron LUN  is 

maxim because this neuron used for learning has to ensure 

that the light spot moving at normal speed remains in the 

photodiode area when the neural network is untrained. Also, 

the activity of these neurons increases the learning rate for 

the neurons that are connected to the photodiodes from the 

tracking area. 

The goal of using the neurons in the tracking area is to in-

crease the nonlinearity of the neural network response in 

order to increase the device performance in spot tracking. 

For assessing the training rate of the neural network we 

evaluate the duration of the learning process by measuring 

the time Lt  elapsed from the beginning of the network stimu-

lation and the first spike generated by the neuron CDN  that is 

the effect of the neuron activation. The initial weights of the 

synapses are zero meaning that the network is untrained.  

Learning Rate  

The learning duration was measured when the synapses are 

potentiated by posttetanic potentiation (PTP) respectively by 

short-term and long-term potentiation (STP-LTP) mecha-

nisms.  

The results presented in table 1 show that the learning rate 

given by the measured learning time intervals increases with 

the number of active neurons for both learning mechanisms. 

The durations presented in the PTP column were obtained 

when the LUN  neuron was inactive. The learning rate sig-

nificantly increases when LTP was triggered by the activity 

of the learning neuron LUN  due to the fact that the rate of the 

synaptic increase by STP-LTP is significantly higher.    

2.2 LASER spot movement detection experiment 

The presence of the light spot on the photodiode surface is 

signalled to the corresponding neural network input by the 

circuit presented in figure 5 (a).  The input given by the pho-

todiode is converted by the circuit in a digital signal that is in 

high logic level when the light spot generated by a LASER 

type ADL-65055TL hits the photodiode type BPW20RF.The 

LASER spot diameter was adjusted using lens type CAY046 

according to the setup presented in figure 1 and the LASER 

current was 30 mA.  

 

 

 

 
a)      b)          c) 
 

Figure 5. a) Light detecting circuit connected to the neural network 

inputs; b) auxiliary input circuit for neurons from hidden and output 

layers; c) circuit for integration of the network output energy.  

 

Figure 6 presents the results obtained after the neural net-

work behaviour was evaluated using the input given by the 

photodiode array. The signal diagrams (a) and (b) presents 

the neural network output integrated using the circuit in fig-

ure 5 (c) when the same test was performed twice.   

 

a)  b)  
Figure 6. Two network response when the laser beam hits simulta-

neously one, two and respectively three photodiodes. The recordings 

were performed after the network training in two different days.  

 

In this case when the LASER spot moved across the photo-

diodes, the behaviour of the neural network was similar with 

that obtained when the network was stimulated by the micro-

controller. The number of active neurons nA from the tracking 

area determines the power of the network output and the re-

sponse time.  

Thus, as shown in figure 6 if more neurons from the tracking 

area are active, the output energy is higher and the response 

time is slightly decreased. The energy generated by the neu-

ral network can be calculated using the spike duration and 

amplitude which are given the network learning state. Be-

cause more neurons were activated when the spot displace-

ment from centre position was higher implies that the net-

work behaviour is suitable for adjusting the position of the 

light spot.  

3. CONCLUSIONS 

The light spot tracking is a necessity for enhancing the qual-

ity of the link stability in FSO communication or for increas-

ing the received light power in photovoltaic systems. Also, 

the consumed energy of the tracking devices should be very 

low for providing more portability to the communicating 

devices and for increasing the efficiency of the photovoltaic 

power supplies. Thus, the most suitable processing unit for 

solving this task can be the analogue implementation of the 

spiking neural networks due to non-linear behaviour, fast 

response time and the very low power operation.  

 After testing the neural network performance by 

simulation of the light receiver activity using a microcon-

TABLE I 

TRAINING DURATION  

Active neurons 

(nA) 

 Posttetanic potentiation 

PTP (seconds) 

Long-term potentiation 

LTP (seconds) 

1 2’52” ~3 

2 30” ~3 

3 20” ~1 
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33K

324LM

meg1

V5

F47.0

K220

DC

F1
K120

][iUNLUN

LUN

CDN
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troller, the results showed that the velocity of the spot 

movement in strait line can reach easily 360 cm/s while the 

consumed power of the active neurons is less than 10 µA. 

Also, similar nonlinearity of the network behaviour was 

obtained when it was tested in real conditions using a 

LASER beam that was moving across a photodiode area. 

The spot wandering speed which might be compensated by 

the spiking neural network makes this type of tracking de-

vice suitable for free space optics communications. More-

over, these low power neural networks are suitable for im-

proving the efficiency of the photovoltaic power supplies by 

continuously tracking the light spot of maximum intensity.    
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