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ABSTRACT
A discrete version of the Ricci flow, applicable to images,
is introduced and applied in image denoising and in single-
image-based enhancement and super-resolution. This flow is
unique among the geometric flows that have been applied in
image processing, in that it is the only flow wherein the met-
ric of an image evolves rather than the image itself as is the
case in other geometric flows applicable in image process-
ing. The flow is based on the combinatorial Ricci curvature
defined by Forman, that was previously introduced by the
authors in the context of image processing. It is shown that
the Ricci flow preserves image structure much better than the
Beltrami flow and other state-of-the-art image enhancement
schemes. Implementation of the Ricci flow is applicable also
to general surfaces such as required in computer graphics and
other applications.

1. INTRODUCTION

Diffusion methods, and curvature flows, based on the mean
curvature of an image, considered as a surface embedded
in some Euclidien space, belong by now to the basic reper-
toire of methods available to the image processing commu-
nity (see, e.g. [23], [1], [14], [21], [22], [23], [24] and refer-
ences therein). Typically, these flows come in the following
form:

∂ I
∂ t

= O(I) , (1)

where O is some operator, sensitive to curvature, acting on
the image I. Recent years studies show that such flows are
instrumental in applications such as reconstruction, segmen-
tation and recognition (e.g. [6], [19], [25], [14], [1]).

One curvature function that is extensively used in geom-
etry is the Ricci curvature. It measures the deviation of a
manifold from being locally Euclidean in various tangential
directions. More precisely, it appears in the second term of
the formula for the (n− 1)-volume Ω(ε) generated within a
solid angle (i.e. it controls the growth of measured angles):

v ·Ricci(v) = n−1
vol
(

Sn−2
)

∫

w∈Tp(Mn),w⊥v
K(< v,w >)

where < v,w > denotes the plane spanned by v andw, and
K(< v,w >) is the sectional curvature relative to that plane
via the exponential map. i.e. Ricci curvature represents an
average of sectional curvatures. The analogy with mean cur-
vature is further emphasized by the fact that Ricci curvature
behaves as the Laplacian of the metric (see [4]).

The Ricci flow is defined by the following equation (see

[11], [12]):
∂G

∂ t
=−Ric(I) , (2)

where G is the image metric and Ric denotes the Ricci cur-
vature. The Ricci flowwas proposed by Hamilton in [11] as a
way of resolving some essential conjecture about the geom-
etry and topology of 3-dimensional manifolds. Note that the
flow given in Eq. (2) is essentially different from classical
diffusion processes applied to images, such as Eq. (1), since
in the Ricci flow it is the metric of the image rather than the
image itself that is evolved. It is important to note that in di-
mension n= 2, which is the most relevant to classical image
processing and its related fields, Ricci curvature equals twice
the Gauss curvature.

Stimulated by Perelman’s work on the Ricci flow ([16],
[17]), some discrete versions of it penetrated the main stream
of imaging and graphics, originating with the works of Gu et.
al. [26].

In the work of Forman [8], combinatorial analogue of
Ricci curvature is defined. This operator is introduced in
[8] in the context of cell complexes. Roughly speaking, one
can think of a grid, mesh or triangulation as examples of
cell complexes. Every Riemannian manifold possesses a cell
complex structure (see [15]).

The paper is organized as follows. In Section 2 we out-
line our proposed adaptation of the combinatorial Ricci cur-
vature, as defined by Forman, to images. This adaptation was
introduced in details by the authors in [20]. In Section 3 we
use this operator for a novel diffusion process implemented
on images, in the context of image enhancement. In Section
4 we present some experimental results. Finally, Section 5
summarizes the paper and presents some work in progress.

2. APPLICATIONS - FROM RIEMANNAIN
MANIFOLDS TO IMAGES

In this section we briefly outline our proposed implementa-
tion of the Ricci curvature for images, following [20]. Before
defining this curvature measure we have to introduce the cel-
lular decompositionwe attach to images. This comes natural,
as it is induced by the grid representation of an image (illus-
trated in Figure 1). One should bear in mind that since we
represent images as manifolds (usually surfaces), we need
the cellular decomposition to be defined on the image sur-
face. In this context, the 2-cells are actually the surface ele-
ments of the form I(p), where p = (i, j) is the (i, j) pixel of
the image I, and the 1-cells are the arcs I(e), where e is either
vertical or horizontal edge between adjacent pixels.
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Figure 1: Cell decomposition of an image.

2.1 Ricci Curvature
Refering to the cellular structure imposed on images as de-
scribed above, we define:

Definition 1. The Ricci curvature of I along the edge e0 is
given by:

Ric(e0) = w(e0)
[

(w(e0)
w(c1)

+ w(e0)
w(c2)

)

−
(

√
w(e0)w(e1)
w(c1)

+
√
w(e0)w(e2)
w(c2)

)]

.

All terms w represent weight functions ([8]). These func-
tions are supposed to reflect geometric entities such as length
and area.

2.2 Weighting Methods
In this subsection we address the issue of how to determine
the weights. We review two essential schemes for weight-
ing, a combinatorial one and a geometric one. While it is
unlikely to have an optimal set of weights, the geometric
scheme seems to be superior over the combinatorial one in
terms of quality of obtained results. However, it is more ex-
pensive in terms of computing resources.

2.2.1 Combinatorial weighting
In this case the weight w(c) of a 2-cell surface element is
assigned as the gray level of the corresponding pixel. The
difference of gray levels of adjacent pixels along an edge e is
taken asw(e). Figure 2 depicts an example of Ricci curvature
obtained with combinatorial weights.

2.2.2 Geometric Weights
While combinatorially weighting of cells is simple and effi-
cient computationally, we would still like to account also for
the geometry of the image. The most natural way to accom-
plish it is by defining the weights w(e) and w(c) so that they
reflect length and area respectively. The basic way to do it is
through the metric of the image. The metric of a gray level
image is given by the matrix, ([21], [14], [22]):

Gi, j =

(

β + I2x IxIy
IyIx β + I2y

)

,

where β is a parameter that scales the differential change
of the image dI with respect to the spatial differentials of
X and Y , dX ,dY respectively, thus enabling one to adjust
the sensitivity to image gradient (i.e. presence of edges - see

Figure 2: Ricci curvature obtained with combinatorial
weights.

[21]). For color images rendered as surfaces embedded inR5
with coordinate system I= (X ,Y,R(X ,Y ),G(X ,Y ),B(X ,Y )),
a similar parameterized metric is given (see [21]).

For simplicity, in this work we account for the “stretch”
only in the horizontal and vertical directions. We therefore
define:

w(ex)= ds(ex)=
√

β + I2x dx , w(ey)= ds(ey)=
√

β + I2y dy .

The area element above a pixel is then given only as first
order approximation by dA = ds(ex)ds(ey) .
Figure 3 shows the outcome of computing Ricci curvature of
an image, while using geometric weights.

Figure 3: Ricci curvature with geometric weights. Notice the
explicit detection of edges. This should be expected, since
edge curvature is expected to be of significantly higher value
than the value of curvature in homogenous areas.
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3. RICCI FLOW FOR IMAGES

3.1 Classical Image Diffusion
The most common operators used for O in Eq. (1) are mod-
ifications of the Laplacian of the image, %I = tr(HessI) =
Ixx + Iyy.
In the simplest linear case one assigns:

O =%I .

When considering images as Riemannian manifolds, it is
common to replace the Laplacian by the Laplace-Beltarmi
operator ([14], [22], [24]). One then set ([4], [18]):

O =%G I =
1

√

det(G )

2

∑
i, j=1

∂
∂Xi

(
√

det(G )G i, j ∂ I
∂X j ) .

It should be noted that%G I is exactly the mean curvature of
the image surface (see [4]).

3.2 Ricci Flow
We are interested in applying the Ricci flow of Eq. (2) on
images. Note again that in this case the metric of the image
is evolved rather than the image itself. In particular, since
the metric of an image is roughly equivalent to its gradient
field, evolving the metric is equivalent to evolving the gradi-
ent field of the image. In order to be able to obtain a flow
over the image it is therefore essential to solve the problem
of reconstruction of an image out of its gradient field. The
application of the Ricci flow on images is illustrated in the
following diagram:

Figure 4: The Ricci flow diagram. Integration means that
the newly iterated image is reconstructed from the evolved
gradient field.

3.3 Image Reconstruction from Gradient Field
As noted above the reconstruction from the gradient field is
essential for our scheme. We have used the method of Pois-
son solver proposed in [2]. In order to overcome noisy arti-
facts that are parts of the outcome of using the Poisson solver
method, we use a Gaussian filter and apply it on the gradient
field prior to applying the Poisson solver method. Figure 5
below shows the outcome of this method with and without
filtering. Evidently, after smoothing the gradient field, the
reconstructed image is smoother.

4. RESULTS

In all applications shown below weights where taken as geo-
metric weights.

Figure 5: Reconstruction using Poisson solver. Top left:
Original image. Top right: Reconstruction without filter-
ing. Bottom: Reconstruction after Gaussian filtering of the
gradient field.

4.1 Ricci Flow for Image Denoising
In Figure 6 we compare the performance of the Ricci flow
with that of two other state-of-the-art denoising techniques.
One is the Beltrami flow and the other is the non-local means
method (see [22], [3]). The image shows Lenna with about
3.5 db of noise added to it. Note that in the noisy image,
(Figure 6 top right), it is almost impossible to identify its
content. Nevertheless, after just 3 iterations of the Ricci
flow the content of the image clearly emerges. The Ricci
flow significantly outperforms the other methods. This fig-
ure also illustrates an artifact of the flow under which the
image is overall darker. This artifact is addressed in our cur-
rent study in which we apply a normalized version of the flow
that keeps the DC component of the image fixed. In Figure
7 we compare the performance of the Ricci flow with that of
the Beltrami flow and of the total variation diffusion scheme
for the task of denoising ultrasound images ([3]). The image
shows part of the brain of a human embryo. Scrutinizing the
bottom-right corner of the figure, it is observed that both the
Beltrami and the Ricci flow overcome the speackle noise of
the ultrasound better than the total variation scheme. How-
ever, the Ricci flow preserves the detailed structure of the
image much better than the Beltrami flow. This is a direct
consequence of the fact that by applying the Ricci flow on
a surface that has the topology of a disk, the flow converges
to a surface of strictly positive constant curvature (see [12]),
which reflets a preserved structure of the image. This is in
contrast with the case of Beltramy flow (or any other geo-
metrical flow for this matter) wherein, by appllying it to such
a surface, the outcome is a flat surface and, hence, no corre-
sponding image structure is preserved.

4.2 Inverse Ricci Flow for Single Image Sharpening and
Superresolution
Whereas the Ricci flow smoothes a surface until it converges
to a surface of constant curvature (see [12]), the inverse Flow
presented below is endowed with a sharpening effect. We
use it in order to overcome blurring effects that are caused
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Figure 6: Ricci flow applied to Lenna image. Top left: Orig-
inal image. Top right: Original image with 3.5 db noise.
Middle left: Image after Beltrami flow. Middle right: Im-
age after non-local means.Bottom: Image after 3 iterations
of the Ricci flow. Note the fair reconstruction of the very
noisy image.

by image interpolation. The inverse Ricci flow is given by:

∂G

∂ t
= Ric(I) . (3)

In Figure 8 we illustrate an image that underwent first a bicu-
bic interpolation and then was sharpened by inverse Ricci
flow. One can easily see how the edges of the interpolated
image become smoother and the image looks sharper. Some
non-continuousness artifacts can be seen along the edges.
These artifacts are obtained due to the fact that the inverse
Ricci flow is an ill-posed operator. We expect the normal-
ized flow to reduce these artifacts.

5. SUMMARY
The Ricci flow, introduced in this paper in the context of
image processing, is applicable to the processing of fully
textured images in a variety of tasks such as enhancement.
It is important to note that the Ricci flow is unique among
flows that are applied in image processing, in that it is the
only flow wherein the metric of an image evolves rather than
the image itself, as is the case in other flows applicable in
image processing. As a direct consequence of this important
property, the evolutionary process converges onto a surface
of constant, strictly positive curvature. This non-flat surface
reflects a certain image-structure that is preserved under the

Figure 7: Ricci flow on real data. Top left: Original ultra-
sound image. Top right: Image after total variation filtering.
Bottom left: Beltrami flow. Bottom right: Image after Ricci
flow.

flow. This is in contrast to all diffusion-type flows (including
Beltrami ), where the surface is flat in the limit (i.e. no
image structure is preserved). Examples shown in the paper,
and many more, show very high rate of convergence of the
flow, achieving very good results already after only very few
iterations. The results of the denoising process are shown
to be superior to those obtained by other state-of-the-art
methods. Normalization of the flow can easily preserve the
DC level of the image and enable to overcome some of the
artifacts of the non-normalized flow. We also implement
the Ricci flow on video sequences. Implementation of the
Ricci flow as suggested in this paper is also applicable for
general surfaces such as those encountered in the context of
computer graphics.
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