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ABSTRACT 
 
From the sampling theory, if the bandwidth of a signal is 
small, then the sampling interval can be very large. In this 
paper, a higher order modulation scheme is proposed to 
minimize the bandwidth of a signal. Then, combining the 
proposed high order modulation with the fractional Fourier 
transform and time-frequency analysis, a new sampling 
algorithm is presented. The proposed sampling algorithm 
can minimize the area of a signal in the time-frequency 
domain and much reduce the number of sampling points. 
Simulation results show that, when using the proposed 
sampling algorithm, the amount of data required for 
recording a signal can be much less. The proposed sampling 
algorithm is especially efficient for sampling a time variant 
signal, such as the voice of an animal and the speech signal.        
 

Index Terms— Signal sampling, time-frequency 
analysis, time variant signal analysis, spectrogram, 
modulation 
 

1. INTRODUCTION 
 
From Shannon’s sampling theory [1], to sample a signal, the 
sampling frequency should be larger than the Nyquist rate:  

                         sf F       i.e.,        
1

F
              (1) 

where fs is the sampling frequency,  = 1/fs is the sampling 
interval, and F is the total bandwidth (including the positive 
and the negative frequency parts) of the signal. From (1), it 
can be seen that the upper bound of the sampling interval is 
determined by the bandwidth of a signal.   

Moreover, suppose that the support of a signal is T:   
                        0x t     for t < t0 and t > t0+T.     (2) 

If its bandwidth is F, from (1), the number of sampling 
points required for x(t) is               

                                         
t

T
TF


.         (3) 

Therefore, the TF value determines the lower bound of 
sampling points.  
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Figure 1 – (a) The STFT of the fundamental harmonic part 
of a whale voice signal in [2]. (TF value = 2100) (b) The 
STFT of x1(t) defined in (5). x1(t) is the modulated analytic 
signal for the whale voice signal in (a) (TF value = 210).   
 

For example, Fig. 1(a) is the short-time Fourier 
transform (STFT) [3][4] of the fundamental harmonic part 
of a whale voice signal obtained from [2]. The STFT is one 
of the methods to transform a signal into the time-frequency 
domain. In Fig. 1(a), one can be seen that the signal is 2.1 
second long and the bandwidth of the signal is about 1000 
Hz. Thus, the number of sampling points required for the 
signal should be larger than TF = 2.1  1000 = 2100.                  

Since the lower bound of the number of sampling 
points is determined by TF, i.e., the “rectangular area” of the 
signal in the time-frequency plane, to minimize the number 
of sampling points, one can try to reduce the TF value. 
There are several ways to accomplish it. For example, one 
can first convert the signal into the analytic signal form [1]:    
                              a Hx t x t jx t             (4)        

where xH(t) is the Hilbert transform of x(t). Note that Xa(f) = 
X(f) for f > 0 and Xa(f) = 0 for f < 0. Then, the conventional 
modulation operation is performed for xa(t) [1]:      
                            12

1
j f t

ax t e x t .           (5) 

For example, for the whale voice signal whose STFT is as in 
Fig. 1(a), after applying the analytic signal conversion and 
the conventional modulation operations as in (4) and (5) (f1 
is chosen as 440), the STFT of the resultant signal x1(t) is as 
in Fig. 1(b). It can be seen that the bandwidth of x1(t) is 
about 100 Hz (from -50Hz to 50Hz) and the TF value (i.e., 
the lower bound of the number of sampling points) is 
reduced to  2.1  100 = 210.                     
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Figure 2 – The flowchart of the proposed sampling 
algorithm.  
 

In this paper, we introduce an efficient signal sampling 
algorithm that is based on the proposed high order 
modulation operation. That is, instead of the conventional 
modulation operation in (5), the higher order exponential 
function is adopted for modulation. Moreover, the fractional 
Fourier transform [5], the signal segmentation technique, 
and the pre-filter for reducing the aliasing effect before 
sampling [1] are also applied in our sampling procedure. 
The whole procedure of the proposed sampling algorithm is 
plotted in Fig. 2. The simulation results show that the 
proposed sampling algorithm is especially efficient for 
sampling a time-variant signal, such as the speech signal and 
the voice of an animal.    

             
2. HIGHER ORDER MODULATION 

 
The goal of the higher order modulation operation is to 
make the bandwidth of each part as small as possible 
(Remember that narrower bandwidth means that larger 
sampling intervals can be applied. Using larger sampling 
intervals can reduce the number of sampling points).  

The conventional modulation operation is to multiply 
the signal by a linear phase exponential function, as in (5). 
Here, instead of (5), we perform the generalized modulation 
operation and multiplying x(t) by a higher order exponential 
function, i.e.,  

                         modulationx t m t x t  (6) 

where  

       1
1 1 0exp 2 ( )n n

n nm t j a t a t a t a 
       . (7) 
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Figure 3 – (a) The central frequency (varies with time) of the 
whale voice signal whose STFT is as in Fig. 1(a). (b) Using 
a 5th order polynomial to approximate the central frequency 
of the whale voice.  
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Figure 4 – The STFT of x2(t) where x2(t) is the result of 
proposed high order modulation of the analytic signal of 
the whale voice in Fig. 1(a) (TF value = 73.5). Compared 
with Fig. 1(b), it can be seen that the bandwidth of x2(t) is 
much narrower than that of x1(t), which is generated from 
conventional modulation   
 
Note that the phase of m(t) is an nth order polynomial. Since 
the instantaneous frequency of m(t) is      

               1
1 1 0( )n n

n n
d a t a t a t a
dt


            

            1 2
1 1( 1)n n

n nna t n a t a 
     ,        (8) 

if STFTx(t, f) and STFTy(t, f) are the STFTs of x(t) and y(t) = 
m(t)x(t), respectively, then    

    
 
 1 2

1 1

,

, ( 1)

y

n n
x n n

STFT t f

STFT t f na t n a t a 
     

.   (9)  

Therefore, with the generalized modulation in (7), one can 
adjust the “shape” of the time-frequency distribution of a 
signal more flexibly. It has higher ability to reduce the 
bandwidth requirement for a signal.  

For example, for the whale signal whose STFT is as in 
Fig. 1(a), its central frequency is plotted as in Fig. 3(a). Note 
that the central frequency varies with time. Then, in Fig. 
3(b), we use a 5th order polynomial as follows to 
approximate the central frequency curve in Fig. 3(a)   
          2 3

5 313.2 829.1 2298.6 2728.5P t t t t        

                     4 51465.2 292.9t t  .              (10) 

The approximation is performed by Legendre polynomial 
expansion [9]. That is, if the central frequency of the signal 
is h(t), then the nth order polynomial used for approximating 
h(t) can be determined from:             

 

 
 

Input 
Signal 

Time-Frequency 
Analysis 

Signal Segmentation

Higher Order 
Modulation  

Measure the 
Bandwidth for 

Each Part  

Determine 
Extra 

Parameters   

Determine the 
Sampling 

Interval for 
Each Part   

Sampling 

Analytic Signal 
Generation 

Fractional Fourier 
Transform 

Pre-Filter 

(a) (b) 

f f 

f 

t-axis 

t-axis t-axis 

2144



 
Figure 5 – The FRFT filter in (17) is equivalent to placing a 
separating line in the time-frequency domain. 
 

         
0

n

n k k
k

P t a t


    where    0

0

t T

k kt
a h t t dt


  , (11)    

                      0 / 22
/ 2k k

t t T
t L

T T


    
 

,         (12) 

[t0, t0+T] is the support of h(t), and {Lk(t) | k = 0, 1, 2, …} is 
the Legendre polynomial set that is orthonormal in the 
interval of t  [1, 1]. Since   

        2 3 4
5 313.2 414.5 766.2 682.1P t dt t t t t                 

                         5 6293.0 48.8t t  ,      (13) 

from (7)-(9), the whale voice signal can be modulated by  
                    modulation

2a ax t x t m t x t         (14) 

where xa(t) is the analytic signal defined in (4) and     

    2 3 4( ) exp 2 313.2 414.5 766.2 682.1m t j t t t t      

                           5 6293.0 48.8t t    . (15) 

The STFT of x2(t) is plotted in Fig. 4. Compared with Fig. 
1(b), it can be seen that the bandwidth of x2(t) is much 
narrower than the bandwidth of x1(t), which is generated 
from the conventional modulation operation. The 
bandwidth of x2(t) is only about 35 Hz (from -17.5 Hz to 
17.5 Hz) and the TF product is 35  2.1 = 73.5. (Remember 
that the TF product is the lower bound of the number of 
sampling points). In comparison, the bandwidth of x1(t) is 
100 Hz and its TF product is 210. Therefore, with the 
proposed higher order modulation operation, the bandwidth 
of a signal can be much reduced and the sampling efficiency 
is obviously improved.    
 

3. COMBINING HIGHER ORDER MODULATION 
WITH THE FRACTIONAL FOURIER TRANSFORM 

 
In [5][6][7][8], the fractional Fourier transform (FRFT) was 
adopted to rotate the time frequency distribution of a signal 
and improve the sampling efficiency. In this paper, we find 
that, combining the proposed higher order modulation with 
the FRFT, a very low sampling rate can be achieved.   

In our signal sampling scheme, the FRFT plays two 
roles: “signal segmentation” and “bandwidth reduction”.  

To sample a signal adaptively, it is proper to separate a 
signal into several parts and choose a proper sampling 
interval for each part of the signal.   
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Figure 6 – (a) The STFT of the conventional modulation of 
the analytic signal for the whale voice. (b) After performing 
the FRFT and the scaling operation, the STFT is rotated.       
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Figure 7 – (a) Using a 5th order polynomial (black line) to 
approximate the central frequency (blue line) of the signal in 
Fig. 6(b), (b) The STFT of the signal after the scale FRFT + 
proposed high order modulation  (TF value = 50.4).     
 

Signal decomposition can be done by time-frequency 
analysis and the FRFT filter. The definition of the FRFT is:  

        ( )FRFTO x t            

   
2 2cot 2 csc cot

1 cot ( )
j u j u t j t

j e x t dt
     


  


   .  (16) 

It can be viewed as performing the Fourier transform 2/ 
times. From [8], one can see that the FRFT has very close 
relations with the time-frequency distribution. If  

                            ( )FRFT FRFTy t O O x t H u        (17) 

where H(u) = 1 for u < u0 and H(u) = 0 for u > u0, then the 
FRFT filter in (17) is equivalent to placing a separating line 
in the time-frequency domain, as in Fig. 5. The angle 
between the line and f-axis is  and the distance between the 
line and the origin is u0,             

Moreover, the FRFT is also helpful for further reducing 
the bandwidth of a signal. Note that, for the whale signal in 
Fig. 1(b), the energy is large in a wide range when t is near 
to 2. Therefore, it is more proper to rotate the time-
frequency distribution of the signal before performing 
higher order modulation for the signal. The rotation in the 
time-frequency domain can be done by the FRFT.     

In Figs. 6(a) and 6(b), we show the STFTs of x1(t) and 
x3(t), respectively, where x1(t) is generated from (5) by 
choosing f1 as 400 and x3(t) is the FRFT of x1(t). Here, the 
scaled operation is performed before applying the FRFT to 
balance the time domain and the frequency domain:        

                            0.2
3 1(10 )FRFTx t O x t .            (18)  
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Figure 8 – The TF value, which reflects the lower bound of 
the number of sampling points, for each sampling algorithm. 
The TF value can be measured by the area of the block 
circled by the dot lines. (a) The original sampling algorithm. 
(b) Analytic signal conversion + modulation. (c) Analytic 
signal conversion + FRFT + modulation. (d) Analytic signal 
conversion + FRFT + proposed higher order modulation.  

 
Then, according to the 5th order polynomial that can 

approximate the central frequency of x3(t), one can perform 
the following higher order modulation operation for x3(t):    
                         modulation

3 4 3x t x t m t x t  ,   (19) 

   2 3 4( ) exp 2 1.310 1.250 0.281 0.026m t j t t t t       

                           5 60.001 0.0002t t    .  (20) 

The STFT of x4(t) is plotted in Fig. 7(b). In Fig. 7(b), the 
time support T is 21 and the bandwidth F is only 2.4. The 
value of TF product is only 50.4, which is even less than that 
of Fig. 4.   

In Fig. 8, the TF value (i.e., the area of the region circled 
by dash lines) for each sampling algorithm is shown. 
Remember that the TF value is the lower bound of the 
number of sampling points.  

Since the analytic operation can remove the negative part, 
as in Fig. 8(b), and the FRFT can rotate the time frequency 
distribution of a signal, as in Fig. 8(c), they are helpful for 
reducing the number of sampling points. However, even in 
Fig. 8(c), the rectangular region circled by the dash lines still 
contains a lot of non-signal parts. Thus, it is proper to use 
the proposed higher order modulation scheme to “re-shape” 
the time-frequency distribution of the signal. After the 
proposed higher order modulation is applied, the TF product 
and hence the number of the required sampling points can be 
minimized, as in Fig. 8(d).  

Table I.  The actual numbers of sampling points (including 
the required extra parameters) and the reconstruction errors 

for sampling the whale voice signal in Fig. 1.   

Sampling 
Algorithms 

Actual Number of 
Sampling Points 

+ Extra Parameters 

Reconstruction 
error (by 
NMSE) 

Convention 2137 0.607% 
Analytic + 
Modulation 

217 0.604% 

Analytic + FRFT + 
Modulation  

163 0.594% 

Analytic +  
Proposed High 

Order Modulation
76 0.582% 

Analytic + FRFT + 
Proposed High 

Order Modulation
60 0.581% 

 

 
Figure 9 – The reconstruction process of the proposed 
sampling algorithm. 
 

4. RECONSTRUCTION 
 
The process of reconstructing the original signal, which is 
depicted in Fig. 9, is almost the same of that of the original 
sampling algorithm. The differences are that the signal 
should be demodulated by the higher order exponential 
function. Note that the sinc function interpolation is the 
inverse of the sampling operation and removing the 
imaginary part is the inverse of the analytic function 
generation operation.  

For the whale signal in Fig. 1, the numbers of sampling 
points (including the extra parameters required for 
reconstruction, such as the coefficients of higher order 
modulation) and the reconstruction errors, which are 
measured by the NMSE (normalized mean square error) are 
shown. The result shows that the proposed high order 
modulation operation can indeed significantly reduce the 
number of sampling points without sacrificing the accuracy.   

 
5. OTHER SIMULATIONS 

 
In Table II, Figs. 10 and 11, and Table III, another two 
simulations are performed. The input signal for Table II is 
another whale voice signal acquired from [2].  
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Table II.  The numbers of sampling points + extra 
parameters and the reconstruction errors for sampling 

another whale voice signal in [2].   

Sampling Algorithms 
Number of 

Sampling Points 
+ Extra Parameters 

Reconstruction 
error (by 
NMSE) 

Convention 2192 0.737% 
Analytic + Modulation 210 0.617% 

Analytic + FRFT + 
Modulation  

166 0.747% 

Analytic + FRFT + 
Proposed High Order 

Modulation  
93 0.554% 

 
The input signal for Figs. 10-11 and Table III is a speech 
signal, which was acquired from a person who said the word 
“for”. Both the simulation results show that the proposed 
higher order modulation operation is very helpful for 
improving the sampling efficiency for time-varying signals.    
 

6. CONCLUSION 
 
A new signal sampling algorithm, which is the combination 
of the higher order modulation operation, the STFT, and the 
FRFT filter is proposed. With the proposed algorithm, the 
number of sampling points is very near to the area of the 
nonzero region of the signal in the time-frequency plane, as 
the illustration in Fig. 8(d). From the simulation results, the 
proposed method requires much fewer number of sampling 
points to represent a signal. In addition to signal sampling, 
the proposed higher order modulation scheme is also helpful 
for improving the efficiency of data transmission and 
communication.     
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Figure 10 – (a) The STFT of the first harmonic part of the 
speech signal acquired from a person who said the word 
“for”. (b) The STFT of the analytic signal conversion + 
conventional modulation + scaled FRFT operations for the 
speech signal in Fig. 10(a). 

0 2 4 6
-6

-4

-2

0

2

4

0 2 4 6
-6

-4

-2

0

2

4

6

 
Figure 11 – (a) Using a 5th order polynomial (black line) to 
approximate the central frequency (blue line) of Fig. 10(b), 
(b) The STFT of the signal after high order modulation.    
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