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ABSTRACT

This paper presents a method for estimating the tuning and the
inharmonicity coefficient of piano tones, from single notes or
chord recordings. It is based on the Non-negative Matrix Fac-
torization (NMF) framework, with a parametric model for the
dictionary atoms. The key point here is to include as a relaxed
constraint the inharmonicity law modelling the frequencies
of transverse vibrations for stiff strings. Applications show
that this can be used to finely estimate the tuning and the in-
harmonicity coefficient of several notes, even in the case of
high polyphony. The use of NMF makes this method relevant
when tasks like music transcription or source/note separation
are targeted.

Index Terms— non-negative matrix factorization, piano
tuning, inharmonicity coefficient estimation

1. INTRODUCTION

The precise estimation of F0, the fundamental frequency ad-
justed by the tuner, and of B, the inharmonicity coefficient of
piano notes, has been dealt by several studies (e.g. [1, 2, 3])
and, to our knowledge, has always been achieved from sin-
gle note recordings. In the polyphonic case, and for tasks
such as transcription or source separation, these parameters
are sometimes taken into account, but they are rarely jointly
and finely estimated for all the played notes. For example, in
[4], the (B,F0) parameters are learned on some single note
recordings and interpolated on the tessitura. In [5, 6], they are
jointly, roughly estimated during a preprocessing step.

In this paper, we propose a Non-negative Matrix Factor-
ization (NMF) framework to finely estimate (B,F0) from the
analysis of single notes or chord recordings, assuming that the
played notes are known. Given a non-negative matrix V of di-
mensionK×T , the NMF [11] aims at finding an approximate
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factorization:

V ≈WH ⇔ Vkt ≈ V̂kt =

R∑
r=1

WkrHrt, (1)

where W and H are non-negative matrices of dimensions
(K×R) and (R×T ), respectively. In the case of music anal-
ysis, V corresponds to the magnitude (or power) spectrogram
of an audio excerpt, k corresponds to the frequency bin index
and t to the frame index. Thus, W represents a dictionary
containing the spectra (or atoms) of the R sources, and H
represents their time-frame activations. Recently, harmonic
structure [7, 8], temporal evolution of spectral envelopes [9]
and vibrato [7] have been introduced as a parametrization of
the matrices W and / or H , in order to take explicitly into
account specific properties of different musical sounds.

The idea of this work is to introduce the parameters
(B,F0) of each note as constraints for the estimation of the
partials frequencies in the matrix W . In [10], the ideal inhar-
monicity law was directly introduced in the parametrization
of the spectra, however this led to a decrease of piano tran-
scription performances when compared to a purely harmonic
constraint. The key idea here is to include this parametriza-
tion as a relaxed constraint, in order to finely estimate every
partial amplitude and frequency corresponding to a transverse
vibration of the strings at the same time as (B,F0). Note that
in this paper, V is not strictly speaking a spectrogram but
a set of magnitude spectra computed from single notes or
chord recordings. Because the played notes are known, the
elements ofH are fixed to one when a note is played and zero
when it is not. Thereby, only the magnitude spectra of the
dictionary W are optimized on the data.

In order to quantify the quality of the approximation of
(1), a distance (or divergence) is estimated. If the metric is
separable, it can be expressed as:

D(V |WH) =

K∑
k=1

T∑
t=1

d
(
Vkt | V̂kt

)
. (2)

In audio applications, the family of β-divergences is widely
used [12], because it encompasses 3 common metrics: β = 2
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for the Euclidian distance, β = 1 for the Kullback-Leibler di-
vergence and β = 0 for the Itakura-Saito divergence. These
distances are used to define a cost function which is mini-
mized with respect to W and H , respectively. The math-
ematical expressions which are given in this paper are de-
rived within the general framework of β-divergences. The
results presented in the application section are obtained for
the Kullback-Leibler divergence:

dβ=1(x | y) = x(log x− log y) + (y − x). (3)

The rest of this paper is constructed as follows: the gen-
eral NMF model is extended to our framework in section 2,
where a model for the magnitude spectra of the notes and a
soft inclusion of the inharmonicity constraint are presented.
A multiplicative algorithm is then proposed to solve the opti-
mization problem. Section 3 presents the experimental vali-
dation, for the application to the estimation of (B,F0) on sin-
gle notes and chord recordings. Finally, section 4 discusses a
few perspectives for future work.

2. MODEL AND OPTIMIZATION

This section first introduces a general model for a parametric
atom composed of a sum of partials. The information of the
inharmonicity of piano sounds is then included (section 2.2)
as a relaxed constraint on the frequencies of the partials. Fi-
nally, the multiplicative update rules are given to compute the
optimization of the model on the data.

2.1. General parametric atom

The general parametric atom used in this work is based on
the additive model proposed in [7]. Each spectrum of a note,
indexed by r ∈ [1, R], is composed of the sum of Nr par-
tials. The partial rank is denoted by n ∈ [1, Nr]. Each partial
is parametrized by its amplitude anr and its frequency fnr.
Thus, the set of parameters for a single atom is denoted by
θr = {anr, fnr | n ∈ [1, Nr]} and the set of parameters for
the dictionary is denoted by θ = {θr | r ∈ [1, R]}. Finally,
the expression of a parametric atom is given by:

W θr
kr =

Nr∑
n=1

anr · gτ (fk − fnr), (4)

where fk is the frequency of the bin with index k and gτ (fk)
the magnitude of the Fourier transform of the analysis win-
dow of size τ . Here, we limit the spectral support of gτ (fk)
to its main lobe to obtain a simple expression of the update
rules (cf. [7]) and a faster optimization. The results presented
in this paper are obtained for a Hanning window. Its main lobe
magnitude spectrum (normalized to a maximal magnitude of
1) is given by gτ (fk) = 1

πτ .
sin(πfkτ)
fk−τ2f3

k
, for fk ∈ [−2/τ, 2/τ ].

In order to learn the parameters of the model from the
data, a cost function is defined using the β-divergence:

C0(θ,H) =

K∑
k=1

T∑
t=1

dβ

(
Vkt |

R∑
r=1

W θr
kr ·Hrt

)
. (5)

2.2. Inclusion of the inharmonicity constraint

Piano tones are known to be inharmonic (see for instance
[13]): the frequencies of the transverse vibration of an ideal
plain stiff string with fixed endpoints are given by

fn = nF0

√
1 +Bn2, n ∈ N∗, (6)

where F0 is the fundamental frequency of a flexible string
and B the inharmonicity coefficient. B depends on the pi-
ano string design and can be about [10−5, 10−2] along the
tessitura. In the spectrum, inharmonicity results in a slight
frequency shift of every partial from the harmonic law nF0,
and the higher the rank of the partial, the largest the deviation.
This ideal model does not take into account the bridge cou-
pling between the strings and the soundboard, which modifies
the partial frequencies, mainly in the low frequency domain
[14].

The inharmonicity law (6) has already been introduced
in a previous study on parametric NMF [10], constraining
the partials frequencies to exactly follow the ideal inhar-
monic law. However, this study was not conclusive, as this
inharmonic model had poorer performance in a task of piano
transcription than the simpler harmonic constraint. In the
model, given equation (4), it would correspond to a reduction
of the Nr parameters fnr of each note to only 2 parameters
{Br, F0r}. In contrast with this previous study, inharmonic-
ity is here included as a relaxed constraint, allowing for
a local adaptation of the frequency of each partial, while
constraining the entire set of partials to globally follow an
inharmonic law. At the same time, for each partial it allows
a slight frequency deviation from the inharmonicity law, as
for instance due to the bridge coupling with the soundboard.
The set of parameters related to the constraint is denoted by
γ = {F0r, Br | r ∈ [1, R]}. Finally a new cost function is
built by adding a regularization term:

C(θ, γ,H) = C0(θ,H) + λ1C1(fnr, γ), (7)

where C1(fnr, γ) is defined as the sum on each note of the
Euclidian distance between the estimated partial frequencies
fnr and those given by the inharmonicity law, normalized by
the number of partials:

C1(fnr, γ) =

R∑
r=1

1

Nr

Nr∑
n=1

(
fnr − nF0r

√
1 +Brn2

)2

.

(8)
The empirical parameter λ1 is fixed and sets the weight of the
constraint in the global cost function.
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2.3. Optimization algorithm

The optimization is performed using multiplicative update
rules for anr and fnr parameters1. Br and F0r parameters
are updated by means of a simplex search method (as imple-
mented in the fminsearch MATLABTM function). The rules
for anr and fnr are obtained from the decomposition of the
partial derivatives of the cost function given in equation (7),
in a similar way to [7] :

anr ← anr ·
Q0(anr)

P0(anr)
, (9)

fnr ← fnr ·
Q0(fnr) + λ1 ·Q1(fnr)

P0(fnr) + λ1 · P1(fnr)
, (10)

where

P0(anr) =

K∑
k=1

T∑
t=1

[
(gτ (fk − fnr).hrt) .V̂ β−1

kt

]
, (11)

Q0(anr) =

K∑
k=1

T∑
t=1

[
(gτ (fk − fnr).hrt) .V̂ β−2

kt .Vkt

]
, (12)

P0(fnr) =
∑
k,t

[(
anr
−fk.g′τ (fk − fnr)

fk − fnr
.hrt

)
.V̂ β−1
kt

+

(
anr
−fnr.g′τ (fk − fnr)

fk − fnr
.hrt

)
.V̂ β−2
kt .Vkt

]
,

(13)

Q0(fnr) =
∑
k,t

[(
anr
−fk.g′τ (fk − fnr)

fk − fnr
.hrt

)
.V̂ β−2
kt .Vkt

+

(
anr
−fnr.g′τ (f − fnr)

fk − fnr
.hrt

)
.V̂ β−1
kt

]
, (14)

P1(fnr) = 2fnr/Nr, (15)

Q1(fnr) = 2nF0r

√
1 +Brn2/Nr, (16)

are all positive quantities. g′τ (fk) represents the derivative of
gτ (fk) with respect to fk on the spectral support of the main
lobe.

3. APPLICATIONS

The proposed model is applied as an estimator of (B,F0)
on single notes and chord recordings taken from RWC [16]
and MAPS 2 databases. Instead of processing spectrograms,
the observation matrix V is built by concatenating magnitude
spectra computed on each recording. A 500 ms Hanning win-
dow is used in order to get a sufficient spectral resolution for a
good estimation of (B,F0). For the estimation on single note
recordings, V contains 88 columns corresponding to the 88

1For a transcription task, H could be updated with standard NMF multi-
plicative rules [12].

2http://www.tsi.telecom-paristech.fr/aao/en/category/database/

0 200 400 600 800 1000 1200 1400 1600 1800 2000
140

120

100

80

60

40

Frequency (in Hz)

M
ag

ni
tu

de
 S

pe
ct

ru
m

 (i
n 

dB
)

 

 

Observation
Model

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
140

120

100

80

60

40

Frequency (in Hz)

M
ag

ni
tu

de
 S

pe
ct

ru
m

 (i
n 

dB
)

 

 

Observation
Model

(b)

Fig. 1: Initialization for the analysis of a note Gb1. The ob-
served magnitude spectrum is computed from a 500 ms Han-
ning window. (a) Despite a crude initialization of (B,F0), the
23 first partials of the model and the data are overlapping. (b)
The width of the partials of the model is increased to overlap
a greater number of the partials of the data.

notes, from A0 to C8. Because we assume that the processed
notes are known, H is set to the identity matrix of dimensions
88 × 88. For the estimation on chord recordings, the same
protocol is applied for building V and H is filled with ones
when a note is known to be present and zeros otherwise.

3.1. Initialization of W

A good initialization of W results in a majority of partials of
the model overlapping the corresponding partials in the data.
Because of the spectral width of the partials (linked to τ , the
length of the analysis window), even a rough initialization
of (B,F0) leads to the overlap of the first partials (see fig-
ure 1(a)). In order to set the best possible initialization, we
use the model of (B,F0) along the tessitura proposed in [15].
From 6 different types of pianos (upright and grand pianos),
mean curves of (B,F0) are estimated by taking into account
the invariances in the piano string set design and tuning rules.
Results are depicted on figure 2. (Br, F0r) are initialized ac-
cording to this mean model along the tessitura and then the
fnr according to the inharmonic law given equation (6). The
anr are initialized to 1. Moreover, τ is initialized with a
smaller value than the one used for the analysis window, in
order to have partials with larger main lobe (see figure 1(b)).
During the optimization, τ is gradually increased to its final
value, i.e. the length of the analysis window.
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Fig. 2: (a) B model along the tessitura estimated from 6 pi-
anos estimates (see [15] for details). (b) F0 model along the
tessitura obtained from the tuning model averaged on 6 pi-
anos. F0 is depicted as the deviation from equal temperament
in cents.

3.2. Dealing with partials initialized in noise

In practice, if too many partials are initialized in noisy fre-
quency bands, they can get stuck and therefore lead to bad
estimates of the inharmonicity law. For each iteration of
the optimization algorithm, we cancel their influence in the
estimation of the physical parameters γ by removing them
from the regularization term given in equation (8), and by
re-initializing them on the current inharmonic law.

Then,

C1(fnr, γ) =

R∑
r=1

1

]∆r

∑
n∈∆r

(
fnr − nF0r

√
1 +Brn2

)2

,

(17)
where ∆r is the set of reliable partials (not located in noise)
of the note indexed by r, and ]∆r its cardinal. For the pro-
posed application, we first compute the noise level3 NL(fk)
on each magnitude spectrum composing the matrix V , and
at each iteration we look for the estimated partials that have
a magnitude greater than the noise. Thus, we define the set
of reliable partials of each note, being above the noise level,
by ∆r = {n | anr > NL(fnr), n ∈ [1, Nr]}. This crite-
rion is taken into account in the update rules (15) and (16) by
replacing Nr by ]∆r.

3.3. (B,F0) estimation on the whole tessitura from single
note recordings

Nr, the number of partials is computed as arg minNr
(30,

fNr,r < Fs/2), where Fs is the sampling frequency (22050

3The method to compute the noise level is described in the appendix of
[15].
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Fig. 3: (a) B along the tessitura estimated for the 2nd grand
piano of RWC database. (b) F0 along the tessitura estimated
(depicted as the deviation from equal temperament in cents).
(c) Results of the partial estimation for the note Gb1 (index
30 in MIDI norm).

Hz in our experiments). We set β = 1 (Kullback-Leibler
divergence) and λ1 = 10−1.

The results for the second grand piano of RWC are de-
picted on figure 3. The bass break between the bass and the
treble bridges, which produces a discontinuity in B, is well
estimated around the notes 37 and 38 (in MIDI index). The
result of the algorithm for the estimation of the partial mag-
nitudes and frequencies of the note Gb1 (MIDI note index
30) are depicted on figure 3(c). Each partial corresponding
to a transverse vibration of the strings has been correctly esti-
mated. Here, the inharmonic constraint avoids the selection of
partials corresponding to longitudinal vibrations of the strings
(visible around 1300 Hz).

In order to compare the estimation of (B,F0) on single
note and chord recordings, we apply the same method for the
grand piano of the MAPS database (synthesized using high-
quality samples). The curves are presented on figure 4.
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Fig. 4: B (a) and F0 (b) along the tessitura. In dashed line
the initialization. ’+’ markers correspond to the single note
estimation and circles to the 3 chord estimations.

3.4. Multiple (B,F0) estimation on chord recordings

The same protocol as for the single note estimation is used,
except that now the maximum number of partials Nr of the
model is set to 15. The chords are taken in the treble, medium
and bass range of the piano. The results for the grand piano of
MAPS database are depicted with black circles and compared
to the single note estimation values (’+’ markers) on figure 4.
We can see that even for a high degree of polyphony (here 5)
the values of (B,F0) of each note composing the chords are
properly estimated when compared with the reference values
obtained from single note estimation.

4. CONCLUSION

We introduced a model for estimating the inharmonicity co-
efficient and the tuning of piano tones. For now, the method
has been applied to magnitude spectra computed from single
note and chord recordings assuming that the played notes are
known, and the preliminary results presented in this study val-
idate our model. Because the method allows a simultaneous
estimation of the amplitude and the frequency of each par-
tial (corresponding to a transverse vibration) of each note, it
will be interesting to extend it to piano note separation from

a spectrogram, informed by the score (to initialize the matrix
H). Another interesting application will be to learn the inhar-
monicity coefficients and the tuning of the piano from a whole
musical piece : because the curves ofB along the tessitura are
related to the piano design, we may in ideal conditions be able
to infer from these measurements the model of the piano and
the tuning done by the tuner.
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