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ABSTRACT

Consider the Basis Pursuit De-Noising (BPDN) estimator for recov-
ery of unknown, sparse parameters. This note presents an ellipsoid-
based, two-stage screening test method which aims to reduce a-priori
the dimensionality of the resulting optimization problem. The new
elements of the proposed method are given by (i) using an efficient
ellipsoid approximation scheme in both stages and (ii) making bet-
ter use of the information which has been calculated during the first
stage. A comparative experiment indicates that this procedure can
lead to better overall time complexity compared to known screening
tests, while screening away more irrelevant variables in a prepro-
cessing stage.

1. INTRODUCTION

We will first introduce the Basis Pursuit De-Noising (BPDN) esti-
mator briefly in the following. Let n ∈ N denotes the number of ob-
servations, and m � n denotes the dimensionality of the problem.
Given a measurement vector x ∈ Rn, m dictionary vectors(atoms)
bi ∈ Rn. Let these atoms be organized in a matrix B ∈ Rn×m
such that the ith column of B equals bi. Assume that there is an
(unknown) vector w0 ∈ Rm (which is assumed to be sparse) and a
vector e ∈ Rn (which represents noise), such that

x = Bw0 + e.

The task is to recover w0 from x and B. A survey of techniques
applicable to this task is given in [3, 4].

A reasonable estimate w = (w1, . . . , wm)T of w0 is given by
solving the following problem for a given λ > 0:

min
w∈Rm

1

2
‖x−Bw‖22 + λ‖w‖0, (1)

where ‖w‖0 =
∑m
d=1 I(wd 6= 0), with the indicator I(z) equals to

one iff z holds true, and zero otherwise. Here the parameter λ > 0
regulates the tradeoff between the data fit and representation com-
plexity.

While (1) is non-smooth, non-convex, and strictly NP-hard
[8], one often resorts to solving the convex BPDN which serves as
tractable proxy to (1) by solving

w̄ = arg min
w∈Rm

1

2
‖x−Bw‖22 + λ‖w‖1, (2)

where the convex L1-norm is defined as ‖w‖1 =
∑m
d=1 |wd|. Here,

the norm ‖ · ‖1 is regarded as the convex envelop to the non-convex
‖ ·‖0. This estimator (2) is sometimes referred to as to the Least Ab-
solute Shrinkage and Selection Operator (LASSO) estimator. As in
[1], we also assume that ‖x‖2 = 1 and ‖bi‖2 = 1 for i = 1 . . .m.

The formulation of BPDN has found many interesting applications
and theoretical results, in particular because of the facts that:

• Since the BPDN boils down to a convex optimization prob-
lem, it can be solved efficiently with well-known tools as the
Interior Point Method (IPM) [5]. This is a general numer-
ical solver for problems of convex optimization. Extensive
research on this particular problem resulted in a wide variety
of numerical solvers which obtain better practical as well as
theoretical performance by exploiting more structure infor-
mation of the problem. For an up-to-date collection of such
methods, please consult1.

• Theoretical excitement stems from the fact that recoverabil-
ity(such as the support of w0,or some ’good’ estimations of
w0) of w0 can be guaranteed under certain conditions of the
measurement matrix B (Restricted Isometry Property, Null
Space Property, Spherical Section Property, etc, see [3, 4])
and the sparsity level of w0. Such guarantees come in differ-
ent forms as surveyed in [3, 4] and citations.

According to the reference [1], the Lagrangian dual to problem (2)
is given as follows:

θ̄ = arg max
θ∈Rn

1

2
‖x‖22 −

λ2

2

∥∥∥θ − x

λ

∥∥∥2
2

s.t. |θTbi| ≤ 1,∀i = 1, 2, . . . ,m. (3)

The optimal solutions w̄ to problem (2) and θ̄ to problem (3) are
connected through eq. (4) and eq. (5). We refer the readers to the
reference[1] for details.

x =

m∑
i=1

w̄ibi + λ(θ̄), (4)

and

θ̄Tbi ∈

{
sign(w̄i) iff w̄i 6= 0

[−1, 1] iff w̄i = 0.
(5)

Define the halfspace H(y) for y ∈ Rn as

H(y) =
{

z : zTy ≤ 1
}
⊂ Rn.

Let L(y) be the corresponding hyperplane

L(y) =
{

z : zTy = 1
}
⊂ Rn.

The reasoning behind the construction of a screening test goes as
follows. From eq. (3), (4) and (5), we can see that if θ̄ is not on

1http://ugcs.caltech.edu/˜srbecker/wiki/Category:Solvers
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L(bi) nor L(−bi), then w̄i will be zero. This is a crucial observa-
tion for screening tests as pointed out in [1, 2, 6]. The idea is then to
make a set Q ⊂ Rn which contains θ̄, and check for i = 1, . . . ,m,
whether L(bi) or L(−bi) intersects Q or not. If for i, no intersec-
tion takes place, one can conclude that w̄i is zero, and it doesn’t need
to be included in later stages of the optimization problem. That is,
this corresponding dictionary bi is screened away in the subsequent
optimization problem.

The aim of this paper is to reduce m before actually solving (2).
That is, we aim to filter out (or screen out) as many different columns
of B as possible, before performing the convex optimization prob-
lem (2) completely. Such preprocessing stage could then lead to
subsequent less time and memory intensive optimization procedures
since m could be reduced severely. An important point is that such
screening stage should not be too computationally involved to per-
form.

Some test methods have been devised already in [1, 2, 6] with
different levels of effectiveness. This note introduces a two-stage
ellipsoid based screening test which further improves the screening
performance. This means that in total, the computational cost includ-
ing the cost for the screening test and the cost for the subsequent op-
timization will be reduced. Our strategy is composed of two stages,
which in general are:

1. Approximate the basic potential region Q for θ̄ with an ellip-
soid, and then perform the ’intersection test’. If neitherL(bi)
nor L(−bi) intersect with this ellipsoid, then the correspond-
ing w̄i is set to zero. This is similar to the tests as performed
in the traditional screening tests.

2. In the second stage, a new approximation of the potential re-
gion of θ̄ based on the information which is obtained earlier
(we only choose one halfspace which shrink the volume most,
details are in section 3). Then another round screening test is
obtained based on this updated ellipsoid. Note that, this stage,
the test only is carried out on those atoms with haven’t been
determined to be screened out in the first stage.

Our method is motivated as follows: (1) the update rule of the ellip-
soid approximation is simple; (2) while performing the ’intersection
test’ in the first round, information can also be used for obtaining a
tighter approximation of the potential region of θ̄; (3) the ’intersec-
tion test’ in every round also requires low time cost.

We will use the following notational conventions throughout. A
lower-case letter denotes a scalar, a boldface lowercase a vector and a
boldface capital denotes a matrix. This paper is organized as follows.
Section II describes the ellipsoid related results, including the update
rule, and some related geometrical results. Section III describes our
algorithm in detail. Section IV gives experimental results indicating
the efficacy of the method, and compares to existing approaches.
Section IV concludes this paper and points towards interesting open
avenues for further research.

2. ELLIPSOID RELATED RESULTS

In this section, we will give the ellipsoid update rule and some re-
lated results. These results will be used in the forming of our pro-
posed algorithm in the following sections.

2.1. Ellipsoid Update Rule

Given a halfspace represented as

Hh(xp,g) =
{

z ∈ Rn : gT (z− xp) + h ≤ 0
}
,

and the corresponding hyperplane as

Lh(xp,g) =
{

z ∈ Rn : gT (z− xp) + h = 0
}
,

where h ≥ 0,g,xp ∈ Rn are given, and an ellipsoid

E(xp,Pp) = {z ∈ Rn : (z− xp)
TP−1

p (z− xp) ≤ 1},

where Pp ∈ Rn×n and Pp � 0. Then the ellipsoid with the
minimum volume which contains the intersection of Hh(xp,g) and
E(Pp,xp) could be represented as

E(xu,Pu) =
{

z ∈ Rn : (z− xu)TP−1
u (z− xu) ≤ 1

}
.

Here we define{
xu = xp − 1+αn

n+1
Ppḡ

Pu = n2(1−α2)

n2−1

(
Pp − 2(1+αn)

(n+1)(α+1)
PpḡḡTPp

)
,

(6)

where ḡ = g√
gTPpg

and α = h√
gTPpg

.

The derivation of this update rule is given in [5]. It has found
main application for bounding convex sets as in the membership set
method [7] as commonly used in system identification. It also plays
an important historic role in finding polynomial time solver for solv-
ing Linear Programming (LP) problems [5]. In the following, we
will give a rule which decides if a hyperplane intersects with an el-
lipsoid or not.

2.2. Intersection test

Lemma 1 Given h > 0,xp ∈ Rn,g ∈ Rn,Pp ∈ Rn×n. Define

α =
h√

gTPpg
.

If |α| > 1, then the intersection of the hyperplane Lh(xp,g) with
the ellipsoid E(xp,Pp) is empty.

Proof 1 From a geometric viewpoint, this lemma follows by the fol-
lowing reasoning. Since

{z : gT (z− xp) + h = 0}

∩ {z : (z− xp)
TP−1

p (z− xp) ≤ 1} = ∅, (7)

holds if and only if

{z : gTP
1
2
p z + h = 0} ∩ {z : zT z ≤ 1} = ∅. (8)

Notice that the distance from 0 to the hyperplane given as {z :

gTP
1
2
p z + h = 0} is equal to

|h|√
gTPpg

.

Hence it follows that if |α| > 1, the intersection will be empty. This
concludes the proof.

In the following, we will characterize how much of the volume will
be shrunken by the update.
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2.3. Shrinkage of the Volume

Lemma 2 Define

α =
h√

gTPpg
.

If 0 ≤ α ≤ 1, then one has that after the ellipsoid update as depicted
in eq. (6), the volumes are shrunken as:

vol (E(xp,Pp))

vol (E(xu,Pu))
=

nn

(1 + n)(n2 − 1)
n−1
2

(1− α)(1− α2)
n−1
2 .

Proof 2 We have that

vol2 (E(xp,Pp))

vol2 (E(xu,Pu))
=
|Pu|
|Pp|

(9)

=

∣∣∣n2(1−α2)

n2−1

(
Pp − 2(1+αn)

(n+1)(α+1)
Ppḡḡ

TPp

)∣∣∣
|Pp|

=

|n
2(1−α2)

n2−1
P

1
2
p

(
I − 2(1+αn)

(n+1)(α+1)
P

1
2
p ḡḡTP

1
2
p

)
P

1
2
p |

|Pp|

=

(
n2(1− α2)

n2 − 1

)n ∣∣∣∣I − 2(1 + αn)

(n+ 1)(α+ 1)
P

1
2
p ḡḡTP

1
2
p

∣∣∣∣
=

(
n2(1− α2)

n2 − 1

)n ∣∣∣∣1− 2(1 + αn)

(n+ 1)(α+ 1)
ḡTPpḡ

∣∣∣∣
=

(
n2(1− α2)

n2 − 1

)n ∣∣∣∣1− 2(1 + αn)

(n+ 1)(α+ 1)

∣∣∣∣
=

n2n

(1 + n)2(n2 − 1)n−1
(1− α)2(1− α2)n−1,

as desired.

Remark 1 From both lemmas, we see that α plays a remarkable
role. This factor not only let us decide whether the hyperplane will
intersect with the ellipsoid or not, but also can help to characterize
how much the volume of the updated ellipsoid will be shrunken. Es-
pecially, from Lemma 2, we can see that the larger α is, the more the
volume of the updated ellipsoid will shrink.

3. ALGORITHM

Using the same notations as in [1, 2], we define λmax = maxi |xTbi|.
The vector b∗ is defined so as to satisfy λmax = xTb∗. It can be
verified that x/λmax is a feasible solution to the dual (3). In order to
avoid the trivial case, we assume that λ < λmax as in [1, 2]. Define
the region R1 ⊂ Rn as

R1 = {θ : bT∗ θ ≤ 1}
⋂{

θ : ‖θ − x/λ‖2 ≤
√

1/λ− 1/λmax

}
.

We can see that R1 is a a region where θ̄ will locate in. This region
has been referred to as a ’dome’ in [2] (an intersection of a halfspace
and a ball). As discussed before, if for i ∈ {1, . . . ,m} neither of
the hyperplanes L(bi) or L(−bi) intersects with R1, then w̄i has
to equal zero. In the references, the authors bound R1 with differ-
ent balls (different center and radius), which led them to convenient
yet effective test as the ’SAFE/ST1’,’ST2’,’ST3’ test [1, 6] or the
’dome’ test[2]. The ’dome’ test is considered to be the most effec-
tive one in the sense of its effectiveness (the number of irrelevant
atoms screened out) and low computation cost. Hence, in the exper-
iment part we will mainly compare the proposed screening test with

the ’dome’ test. As stated briefly in the previous part, the proposed
test will consist of two stages. The formal and precise descriptions
are given as follows.

b*
b̂

0

x/lmax

x/l

x

A

B

Fig. 1. A schematic explanation of the idea behind the 2-stage,
ellipsoid-based screening test when n = 2. The unit circle Sn−1 at
the top indicates the unit sphere including the vectors {bi,−bi}mi=1

and x. The circle at the bottom indicates the set of vectors θ with
distance to x

λ
equal to ‖x

λ
− x

λmax
‖2. Hence, the optimum θ̄ of

problem (3) will be inside this circle. The solid lines indicate the
hyperplanes L(b∗) and L(b̂) as explained in Subsections 3.1 and
3.2. The first stage of the test computes an ellipsoid estimation of the
dome R1 = A

⋃
B which contains θ̄. Then a first round of ellipsoid

based screening is applied, and many of the irrelevant dictionary
atoms will be screened away. As a byproduct, those calculations
give the halfspace H(b̂) which shrinks the volume of the ellipsoid
estimation the most. So, the potential region of θ̄ will be shrunken
from R1 to region B. In the second stage of the test, screening is ap-
plied to the remaining dictionary atoms using the updated ellipsoid.

3.1. Stage 1

1. Compute the minimum volume ellipsoid containing R1.
This calculation is a direct consequence of the update
rule described in section 2, in which xp = x

λ
, g = b∗,

h = λmax
λ
− 1, and Pp = ( 1

λ
− 1

λmax
)In. Denote the

updated ellipsoid as

E1(x1,P1) = {z : (z− x1)TP−1
1 (z− x1) ≤ 1},

where{
x1 = xp − 1+αn

n+1
Ppḡ

P1 = n2(1−α2)

n2−1

(
Pp − 2(1+αn)

(n+1)(α+1)
PpḡḡTPp

)
,

(10)
in which ḡ = g√

gTPpg
and α = h√

gTPpg
.

2. Test for any i = 1, . . . ,m whether L(bi) or L(−bi) inter-
sect with E1(x1,P1) or not. If both do not intersect, then set
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w̄i = 0. Formally, calculate

α+
i =

bTi x1 − 1√
bTi P1bi

,

and

α−i =
−bTi x1 − 1√

bTi P1bi
.

If |α+
i | > 1 and |α−i | > 1 hold together, or equivalently if√

bTi P1bi < min{|bTi x1 + 1|, |bTi x1 − 1|}, (11)

then set w̄i = 0.

Remark 2 Eq. (11) is a direct application of Lemma 1 in Section 2.

Stage 1 gives an ellipsoid approximation to the ’dome’ area R1. As
we have seen in the previous section, the proposed screening test is
also convenient to compute as described above. An interesting fact is
that, while we are doing the screening, if eq. (11) does not hold, one
has the fact that the corresponding halfspace intersects with ellipsoid
E1(x1,P1). Since α−i and α−i have been calculated in hand, we
see from Lemma 2 that α−i , α

+
i actually also indicate the volume

shrinkage of the ellipsoid approximation of the intersection. The
lager they are, the more the volume will shrink. This motivates the
next stage which causes no extra significant computational overhead.

3.2. Stage 2

1. Choose the the maximum value α̂ from {α+
i , α

−
i }

m
i=1 which

satisfies 0 < α̂ < 1. Denote the corresponding halfspace as
H(b̂) and the hyperplane as L(b̂). In the ellipsoid update
rules as in eq. (6), let g = b̂ and h = b̂Tx1 − 1 in order to
compute the updated ellipsoid

E2(x2,P2) = {z : (z− x2)TP−1
2 (z− x2) ≤ 1},

where{
x2 = x1 − 1+αn

n+1
P1ḡ

P2 = n2(1−α2)

n2−1

(
P1 − 2(1+αn)

(n+1)(α+1)
P1ḡḡTP1

)
and in which ḡ = g√

gTP1g
and α = h√

gTP1g
.

2. For i = 1, . . . ,m, if w̄i is not screened away yet during the
first stage, test wether√

bTi P2bi < min{|bTi x2 + 1|, |bTi x2 − 1|}. (12)

If this holds, then set w̄i = 0.

4. ILLUSTRATIVE EXAMPLES

This part describes an example which indicate the efficacy of the
proposed screening test, and compares result with earlier proposed
screening tests. In our example, we chose the dictionary atoms
{bi}mi=1 sampled randomly from a unit normally distributed random
variable, and then normalize each of them to one. we generate the
normalized vector x in the same way. In this example, we let n = 10
and m = 200. Estimation problems of this size are typical in appli-
cations of BPDN, while the relative low-dimensional nature will al-
ready indicate the benefit of the proposed technique. The displayed
figures are obtained by averaging out results over 50 randomizations
of the experiment. In Fig. 2, results of different screening tests are
given:
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Fig. 2. Performance of the different screening test methods, includ-
ing the ’Dome test’, the ’ST3 test’, the ’1-stage ellipsoid test’, ’2-
stage ellipsoid test’. The x-axis represents λ

λmax
, the y-axis repre-

sents the proportion of the number of the screened out zero elements
in w̄. This result illustrates a significant benefit of the proposed 2-
stage screening test for appropriate range of λ/λmax.
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Fig. 3. Improvement of the performance of the ’2-stage ellipsoid
test’ and the ’Dome test’. The x-axis represents λ

λmax
, the y-axis

represents the ratio of proportions of the number the screened out
zero elements in w̄. Larger values indicate less remaining dictionary
elements after the ’2-stage, ellipsoid test’. This plot indicates that
the present test can have a significant gain in terms of number of
screened out dictionary elements for an appropriate range of λ

λmax
.

1. the ST3 method [1], in Fig. 2, with the tag ’ST3’;

2. the 1-stage ellipsoid method as derived in Subsection 3.1
(only performing the first stage), in Fig. 2, with the tag
’1-r-Ellip’;

3. the Dome test method [2], in Fig. 2, with the tag ’Dome’;

4. the 2-stage ellipsoid method as proposed in Section 3 (includ-
ing both stages), in Fig. 2, with the tag ’2-r-Ellip’.

From these figures, we observe the following:

1. When the ratio λ
λmax

is relatively small (in this example less
than 0.3), then all the screening test methods are relatively in-
effective. But in other words, this phenomena is reasonable.
If λmax is fixed, when λ

λmax
is small (which means that λ is

small), then the dome R1 will become very large, and all hy-
perplanes {L(bi), L(−bi)}i could be expected to intersect
the dome with more chance. In the extremal case that λ→ 0,
any screening test would do poor, meaning that such tests can-
not be applied straightforwardly to the noiseless Basis Pursuit
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Fig. 4. Comparison of the average time cost when ’screening with
the Dome test, and solving the reduced BPDN’, and ’screening with
the proposed 2-stage, ellipsoid test, and solving the reduced BPDN’,
The x-axis represents λ

λmax
, the y-axis represents the time needed to

solve a corresponding complete problem. This result indicates that
the improved screening capacity of the 2-stage ellipsoid screening
test does not result in computational overheads, and may well lead
to computational speedups.

(BP) case.

2. When λ
λmax

is between 0.35 to 0.8, we see that the ’Dome
test’ and the ’1-stage ellipsoid test’ perform quite similar
(their performance curve nearly overlapping) to each other,
but do slightly better than ’ST3 test’. However, the 2-stage
ellipsoid test outperforms those as more irrelevant variables
are screened away, the quantitative improvement can be seen
from Fig. 3. This phenomena means that, in this case, it’s
better to use the 2-stage ellipsoid method to do screening.
Here, we need to notice that the time cost for the ’2-stage-
ellipsoid test’ is also quite low. Fig. 4, displays the time
cost for solving the same BPDN problem with ’Dome test’
for screening and ’2-stage ellipsoid test’ for screening. After
screening, we solve the reduced dimension BPDN problem
with ’cvx’ [5], using the internal Sedumi solver. We can
see the time-saving of adopting the ’2-stage-ellipsoid test’
method for screening.

3. When λ
λmax

is larger than 0.8, it appears that all the methods
give very similar performance. This is due to the fact that
in this case the dome area is relatively small, and most of
the hyperplanes {L(bi), L(−bi)}i will not intersect this area
(which means that most coefficients of the solution are zero
for such λ).

Again, note that by construction the screening tests are conservative,
that is, they cannot screen variables away which would be nonzero
in the final solution. Or, no performance can be lost, the screening
stage can only be beneficial since the resulting optimization problem
has smaller dimensionality.

5. CONCLUSION

This note presented an improvement of a screening test method for
the BPDN problem. The motivation is based on an ellipsoid approx-
imation of the potential region for θ̄, while the involved quantities
are found to be useful in the second stage. This second stage leads
to improved screening capabilities, only requring quantities which
were computed in the first stage anyway. Through simulations it
is found that such screening test is most effective when the ratio
λ

λmax
is moderate. The comparative experiment shows that, the pro-

posed ’2-stage ellipsoid’ method results in both effectiveness (more
irrelevant dictionary atoms are screened away) and efficiency (the
time cost for solving the whole optimization problem is reduced)
improvement over the state-of-art screening test method.

However, the following questions remain open: (1) Starting with
a feasible point x

λmax
, the present approach uses an initial potential

region for θ̄ which is the ’dome’ region R1. Can we find a better
starting feasible point in order to make the initial ’dome’ region more
accurate? (2) Can we find a way to generalize the method (includ-
ing the ’SAFE/ST1’, ’ST2’, ’ST3’, ’Dome test’, and the proposed
method) to the the case where 1/λ→∞ as in Basis Pursuit (BP)?
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