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ABSTRACT

The emergence of wireless microphones in everyday life

creates opportunities to exploit spatial diversity when using

fixed microphone arrays combined with these wireless micro-

phones. Traditional array signal processing (ASP) techniques

are not suitable for such a scenario since the locations of the

wireless sensors are unknown and probably vary over time.

In this paper we investigate the use of blind source extrac-

tion (BSE) techniques in such a combined acoustic sensor net-

work to perform speech enhancement. We present strategies

that apply traditional ASP techniques to the fixed microphone

array, while simultaneously the spatial diversity provided by

the wireless microphones is exploited. Our conclusion is that

BSE techniques can be used in a combined wireless and fixed

microphone network to perform speech enhancement.

Index Terms— Blind source extraction, second order

statistics, wireless acoustic sensor network, post processing

1. INTRODUCTION

An important ASP task is the enhancement of a desired

(speech) signal. Nowadays, the desired speech is more and

more contaminated by interfering sources, e.g., speech or

music. Using a wireless acoustic sensor network (WASN)

consisting of a fixed microphone array combined with wire-

less microphones enables the use of the wireless microphones

to increase the sound quality produced by the fixed micro-

phone array. An example application is a consumer VoIP

system. These systems typically use a relatively small mi-

crophone array consisting of two to four sensors and may

be equipped with a wireless transceiver to obtain data from

wireless microphones like mobile phones and tablets.

In a combined WASN, for which a model is depicted

in Figure 1, it is impossible to use traditional beamforming

techniques to enhance the target signal using all microphones

due to unknown and varying sensor positions and a relatively

large spacing. Therefore, more advanced ASP algorithms are

required. In the literature, the multichannel Wiener filter [1],

BSE

x ŝd
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Fig. 1. Model of the blind source extraction (BSE) system for

a combined fixed and wireless sensor network. As an exam-

ple, one desired sd and one interfering si source is depicted.

blind-LCMV (linear constraint minimum variance) beam-

forming [1] and a generalized sidelobe canceler implemen-

tation for the blind-LCMV beamforming algorithms [2] are

proposed. These blind methods do not require prior knowl-

edge about the locations of the sensors; however, they require

exact knowledge about the activity of the desired source and

the interferers. For a multiple speaker environment it is hard

to build a reliable detector that indicates the noise-only and

noise-and-interference-only periods. Additionally, the occur-

rences of these periods may become rare in practice, e.g., in

a highly occupied living room.

In [3] a blind source extraction (BSE) method is proposed

that extracts a desired signal from a complex mixture of spa-

tially correlated signals. In order to identify the desired ex-

traction filter, this method requires a rough guess of the mix-

ing column of the desired source for a subset of the micro-

phones. Applied to beamformer design, this type of prior in-

formation was shown to translate to a guess of the direction

of arrival (DOA) of the desired source with respect to a few

microphones. We expect to have this knowledge available in

many practical situations. In the example VoIP application we

may expect that the desired speaker is located more in front

of the fixed microphone array than interfering speakers.

The BSE method in [3] has some nice properties that lead

to a good performance for a combined fixed and wireless sen-

sor network. First, a mismatch in the estimated DOA is com-

pensated for by the algorithm and the extraction filter does not

depend on this error. Second, the extraction filter is only data
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dependent, which means that not all sensor positions have to

be known. Third, the method works for situations where no

silent periods of the desired source are available.

In this paper we apply the method from [3] to a combined

fixed and wireless acoustic sensor network. We present strate-

gies to handle the following situations with a post processor.

First, acoustic sources typically do not occupy the full fre-

quency band, which also holds for the desired source. Be-

cause the desired source can be extracted only when it is ac-

tive a detection mechanism is required for each frequency bin.

Second, if the mixing system is ill-conditioned, constraints on

the suppression of interference may lead to an undesired gain

of spatially uncorrelated noise; therefore, it may be prefer-

able in practice to apply a minimum variance distortionless

response (MVDR) approach. We show that the conditioning

of the mixing system can be measured and that both filters can

be obtained from the BSE algorithm with a similar method.

Finally, extraction filters can be identified up to an unknown

complex scale per frequency bin. We present strategies to

deal with this scaling problem by using only information that

was already used by the BSE algorithm. To obtain insight in

the BSE problem, we perform our analysis and simulations

on mixtures that contain only a single delay and scaling.

The outline of this paper is as follows. In Section 2 we

introduce our model and assumptions on the source and noise

signals. In Section 3 we recap the procedure from [3]. In Sec-

tion 4 we discuss the three problems addressed in this paper

and present strategies for a post processor. Finally, in Sec-

tion 5 we conclude this paper.

2. MODEL AND ASSUMPTIONS

We assume that mixtures of S ≥ 2 source signals are ob-

served by D sensors. The impulse responses from source to

sensor are assumed to consist of a single weighted delay, i.e.,

xi(t) =
S
∑

j=1

a
j
isj(t− τ

j
i ) + νi(t) (1)

where xi(t) is the i’th sensor signal at time t, sj(t) is the sig-

nal of source j, νi(t) is noise at sensor i, and a
j
i and τ

j
i are

the gain and delay between source j and sensor i. Addition-

ally, we assume to have at least the same number of sensors as

sources, i.e., D ≥ S. Furthermore, we assume ideal wireless

links and synchronized sensor nodes.

The transfer function from each source j to each sensor i

is assumed to be constant in small frequency bands, which is

a widely used and applied assumption [4, 5]. Therefore, by

applying a DFT filterbank we obtain the following expression

in the time-frequency domain:

xi(n,m) =

S
∑

j=1

h
j
i (m) · sj(n,m) + νi(n,m) (2)

where n ∈ Z is the discrete time index, m ∈ {0,M − 1} is

the discrete frequency index, and h
j
i (m) ≈ a

j
i e

− 2π m
M

τ
j

i is

the transfer function from source j to sensor i for the m’th

frequency band.

We can deal with noise in two ways. The first method

is a well known and widely used method where the noise

spectrum is measured in noise-only periods and subtracted

from the observations. The second method exploits knowl-

edge about a noise-free region of support (NF-ROS), which

consists of a set of time-lag pairs (n, k) for frequency bin m

where the sensor correlation data is noise-free. Each element

is indicated by Ωm
κ = {(n, k)κ,m}, where κ ∈ [1,Km] in-

dicates the time-lag pair (n, k) number and Km ≥ S is the

number of time-lag pairs available for frequency bin m. In

the NF-ROS the following conditions hold:

E{sj [n,m]ν̄i[n− k,m]} = 0 ∀ 1 ≤ j ≤ S, 1 ≤ i ≤ D

E{νi[n,m]s̄j [n− k,m]} = 0 ∀ 1 ≤ i ≤ D, 1 ≤ j ≤ S

E{νi1 [n,m]ν̄i2 [n− k,m]} = 0 ∀ 1 ≤ i1, i2 ≤ D

where E is the expectation operator and a bar denotes com-

plex conjugation, e.g., ν̄i.

For simplicity we keep using the symbol Ω to indicate

noise-free correlation data, independent of the used method.

For mutually uncorrelated sources, the sensor correlation

functions have a noise-free structure in the NF-ROS, i.e.,

rxi1i2 [Ω
m
κ ] =

S
∑

j=1

h
j
i1
(m)h̄j

i2
(m)rsjj [Ω

m
κ ] (3)

where rxi1i2 [Ω
m
κ ] , E{xi1 [n,m]x̄i2 [n−k,m]} are sensor cor-

relation functions and rsjj [Ω
m
κ ] = E{sj [n,m]s̄j [n − k,m]}

are source autocorrelation functions in the NF-ROS.

We exploit the structure in the sensor correlation data by

constructing the following correlation matrices:

C
x
i (m) ,













rxi1[Ω
m
1
] · · · rxi1[Ω

m
K ]

rxi2[Ω
m
1
] · · · rxi2[Ω

m
K ]

...
. . .

. . .

rxiD[Ωm
1
]

. . . rxiD[Ωm
K ]













∀ 1 ≤ i ≤ D (4)

Using the following notation of a mixing matrix H(m):

H(m) =







h̃1(m)
...

h̃D(m)






=









h1

1
(m) · · · hS

1
(m)

...
. . .

. . .

h1

D(m)
. . . hS

D(m)









(5)

where h̃i(m) denotes the i’th row from matrix H(m), the

structure of a sensor correlation matrix is given as follows:

C
x
i (m) = H̄(m) diag

(

h̃i(m)
)

C
s(m) (6)
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Fig. 2. BSE algorithm that uses the observations, NF-ROS,

and vectors ξ1 and ξ2 to identify normalized extraction filter

µ̃ and mixing column h as the left and right eigenvectors that

correspond to the smallest eigenvalue λ of matrix M.

where H̄(m) is the conjugate of H(m), diag (·) puts the ele-

ment of a vector on the diagonal of a matrix, and C
s(m) is an

S×K source autocorrelation matrix with following structure:

C
s(m) ,









rs
11
[Ωm

1
] · · · rs

11
[Ωm

K ]
...

. . .
. . .

rsSS [Ω
m
1
]

. . . rsSS [Ω
m
K ]









(7)

We assume that this matrix is full rank, i.e., the source auto-

correlation functions have to be linearly independent. Conse-

quently, we are able to identify the number of active sources

from the effective rank of the correlation matrices in (4) and

apply subspace techniques to obtain S×K matrices Ĉx
i [4,5].

In [3] a procedure is presented that uses the correlation

matrix structure in (6) to identify the following desired ex-

traction filter µ̃(m):

µ̃(m)H(m) = αẽd (8)

where the vectors α ∈ C is a non-zero scaling and ẽd has a

one at the index of the desired source and zeros elsewhere.

From now on, we omit frequency index m for convenience.

3. SUMMARY OF THE BSE ALGORITHM

An overview of the BSE algorithm from [3] is depicted in

Figure 2. First, two linear combinations ξ1 ∈ C
D and ξ2 ∈

C
D of the reduced size, noise-free correlation matrices are

taken, which leads to the following matrices:

Γl =

D
∑

i=1

ξliĈ
x
i ∀ 1 ≤ l ≤ 2 (9)

where ξl =
[

ξl
1
, · · · , ξlD

]T
are designed later. From these

linear combinations the following matrix M, which has a very

specific eigenstructure, is constructed:

M = Γ̄2 (Γ1)
†
Γ2

(

Γ̄1

)†
≡ ĤΛĤ

−1 (10)

where (·)
†

is a pseudo-inverse, Λ is a diagonal matrix, and Ĥ

is the reduced mixing matrix.

µ̃,h

λ
AD

OS SC
w̃

BSE
x(n,m)

Fig. 3. Overview of the post processor where the eigenvalues

from the BSE stage are used for desired source activity detec-

tion (AD). The AD result and the left and right eigenvectors

are used by the objective selection (OS) algorithm. Finally,

the scaling (SC) module scales the desired filter.
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Fig. 4. Overview of the reflection-free room of size 2.5 by 1.5

meters. Desired source sd and interferences si are indicated

with circles, fixed microphones with plus signs, and wireless

microphones with cross signs. The fixed microphones have a

mutual spacing of 0.04 meters.

The equivalence in (10) follows from (6) and (9) and from

the equivalence it follows that the left and right eigenvectors

of the matrix M form the rows from the inverse of the mixing

system and the columns of the mixing system, respectively.

The corresponding eigenvalues, i.e., the elements on the di-

agonal of Λ, have the following structure:

λj =

∣

∣

∣

∣

∣

〈

ξ2,hj
〉

〈

ξ1,hj
〉

∣

∣

∣

∣

∣

2

∀ 1 ≤ j ≤ S (11)

with 〈·, ·〉 the Euclidean inner product. From (11) it follows

that each eigenvalue depends only on the vectors ξ1, ξ2, and

the mixing column of a single source. From [3] we know that

ξ1 and ξ2 should be designed as smooth beamformers, using

a guess of the direction of arrival (DOA) of the desired source.

4. BSE POST PROCESSING STRATEGIES

Before the extraction filters µ̃(m) can be used to enhance the

desired signal, a post processor, as in Figure 3, is required.

The scenario from Figure 4 is used to present our strategies.

Three equal power sources were generated by filtering

white Gaussian signals by a feedback comb filter of order 128
with feedback coefficients -0.9, -0.3, and -0.7, respectively.

1266



The observations were generated by filtering the source sig-

nals with the respective weighted delays for a sampling fre-

quency of 8 kHz. We added white Gaussian noise such that

the desired signal to noise ratio at the fixed sensors is 14 dB.

We used these signals in order to be independent to estimation

errors and to visualize the concept.

The 1,280,000 observed samples were filtered by a 128-

band DFT filterbank, which lead to 20,000 samples per band.

The BSE algorithm was initialized with a NF-ROS of lag 1 up

to 10 for each band. The DOA of the desired source sd was

estimated as zero degrees, which is slightly (5◦) wrong. No-

tice that the eigenvalues of M are the ratios of the beampatters

of the beamformers formed by ξ1 and ξ2, per DOA of each

source [3]. Therefore, ξ1 is chosen as a delay and sum beam-

former for the estimated DOA w.r.t. the fixed sensors, i.e.,

ξ1 =
[

1 1 0 0 0
]T

. Similarly, ξ2 is chosen as a delay

and subtract beamformer, i.e., ξ2 =
[

1 −1 0 0 0
]T

.

4.1. Desired source activity detection

Prior to the BSE algorithm we apply an algorithm that esti-

mates the number of active sources from the effective rank of

the correlation data [5]. The desired extraction filter is iden-

tified even if certain interferers are active in only a few fre-

quency bands. However, if the desired source is not active in

every frequency bin, then the extraction filter for an interferer

is identified. Therefore, we require an activity detector (AD)

that classifies if the desired source is active.

The eigenvalues of the matrix M are a function of the

mixing columns of the active sources and the vectors ξ1 and

ξ2 as in (11) and can be used for activity detection. The eigen-

values measure the Hermitian angle θj [6] between mixing

column j and the vector ξ1 according to |λj | = (tan θj)2.

In Figure 5 we depict estimated Hermitian angles θ̂j using

the following transformation of all eigenvalues of matrix M:

θ̂j = arctan(
√

|λj |). Additionally, we depict the expected

Hermitian angle for a DOA of 10 degrees.

We observe that there is a linear trend over frequencies

when starting from frequency zero. The outliers at the high-

est frequencies are due to a limited bandwidth of the delay

filters in the mixing system. Selecting the smallest eigenvalue

would lead to a selection of the desired filter if the desired

source is active. Alternatively, if the desired source is not ac-

tive in a frequency bin, the estimated number of sources in

that bin reduces and the smallest eigenvalue has a relatively

large value with respect to its neighbors.

Based on this result we propose two strategies to detect

if the desired source is active. First, if identification of only

the smallest eigenvalue of the matrix M is desired we could

use a threshold to detect if the desired source is active. Al-

ternatively, if all eigenvalues of the matrix M are identified,

then we could train a classifier to detect if the desired source

is active in a certain frequency bin. In both strategies knowl-

edge about the estimated number of active sources could be
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Fig. 5. Plot of the ordered and transformed eigenvalues in

solid lines and a threshold on a ±10 degree angle with respect

to the vector ξ1 in a black dashed line.

included as well.

4.2. Objective selection

From the structure in (10) it follows that the left eigenvectors

are rows from the inverse of the mixing system and the right

eigenvectors are columns from the mixing system. The left

eigenvectors can be used as extraction filters and extended to

the LCMV solution that requires zeros for undesired sources,

while the right eigenvectors can be used to extend to the

MVDR, which has no specific constraints on the interfering

sources, i.e., we can minimize the output power in the space

orthogonal to the right eigenvector.

In practice, the preferred objective, i.e., MVDR or LCMV,

depends on the application. One of the considerations is the

sound quality that is produced by the LCMV filter, which de-

pends on the conditioning of the mixing system. If the pro-

jection of the mixing column of the desired source onto the

extraction filter is very small, then the output of this extrac-

tion filter becomes very noise sensitive and the MVDR filter

may be a more appropriate choice. This conditioning can be

measured by the Hermitian angle θH [6] between the extrac-

tion filter and the mixing column of the desired source, i.e.,

cos θH =
|〈µ̃,h〉|

||µ̃|| ||h||
where 〈µ̃,h〉 = µ̃h (12)

If this angle is small, the separation of the interference and de-

sired source is well conditioned and the LCMV objective can

be used. Otherwise, the conditioning is bad and the MVDR

objective may be preferred. Choosing one of these objectives

should be performed per frequency bin and leads to a system

with a frequency dependent number of constraints.

In Figure 6 we compare the observed and actual Hermi-

tian angle between the mixing column and extraction filter of

the desired source for the scenario from Figure 4. We ob-

serve that the estimated angle follows the Hermitian angle of

the actual vectors. The oscillating behavior of the angle, i.e.,

the conditioning of the mixing matrix, per frequency bin is

due to spatial aliasing from the relative large spacing between

the microphones. If an array of only fixed microphones with

relative small spacing were used, a more fluent conditioning
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Fig. 6. Observed and actual Hermitian angle between the

mixing column and the extraction filter. This parameter per

frequency bin can be used to select the desired filter.

would be observed; however, the overal conditioning of the

system would be poorer, especially for lower frequencies.

4.3. Scaling

The extraction filter and mixing column vector can be iden-

tified up to an unknown complex scaling per frequency bin,

which leads to an undesired and unknown filtering of the de-

sired source. This scaling problem can be decomposed into a

local and global scaling problem. The global scaling means

that we don’t know the overall gain of the system, which can

be easily solved by normalizing the output power. The lo-

cal scaling problem, i.e., scaling per frequency bin, can be

solved using different strategies. If the processing is com-

pletely blind, two straightforward strategies are to fix one of

the extraction filter coefficients for each frequency bin or to

restrict the norm of each extraction filter per frequency bin.

Both these strategies typically result in a filtered version of

the desired signal.

Alternatively, if additional knowledge is available we can

use it to improve the scaling. In the scenario from Figure 4,

the array response vector of the fixed sensor array for the es-

timated DOA, which is the vector ξ1, can be used to scale the

extraction filter. This procedure leads to the following scaled

mixing columns ĥ and extraction filters ˆ̃µ:

ĥ =
h

(ξ1)Hh
and ˆ̃µ =

(ξ1)Hh

µ̃h
µ̃ (13)

In Figure 7 we depict the spectra of the impulse responses

from the sources to the output of the extraction system for

extraction filter ˆ̃µ. We observe that the desired source has the

highest gain with respect to the interferences with a relatively

flat response for all frequencies, which means that the desired

source is extracted successfully.

5. CONCLUSIONS

We presented strategies to enhance a desired signal for a com-

bined fixed and wireless acoustic sensor network. Future re-

search topics include a performance analysis of the estimated
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Fig. 7. Magnitude and phase of the transfer functions from the

sources to the output of the BSE system. The scaled extrac-

tion filter with the LCMV objective is used for all frequencies

and the global scaling is normalized.

parameters, application of the algorithm to real speech sig-

nals, and the development of classification algorithms.
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