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ABSTRACT

We propose a method to produce laser scan quality 3-D face
models from a freely moving user with a low-cost, low reso-
lution depth camera. Our approach does not rely on any prior
face model and can produce faithful geometric models of star-
shaped objects. We represent the object in cylindrical coordi-
nates, which enables us to perform filtering operations very
efficiently. We initialize the model with the first depth im-
age, and then register each subsequent cloud of 3-D points to
the reference using a GPU (Graphics Processing Unit) imple-
mentation of the ICP (Iterative Closest Point) algorithm. This
registration is robust in that it rejects poor alignment due to fa-
cial expressions, occlusions, or a poor estimation of the trans-
formation. We perform both temporal and spatial smoothing
of the successively incremented model. To validate our ap-
proach, we quantitatively compare our model to one produced
by laser scanning, and show comparable accuracy.

Index Terms— Kinect, face modeling, graphics

1. INTRODUCTION

Since accurate 3-D face modeling with affordable sensors
can open exciting applications, many researchers in computer
vision and graphics have proposed methods from structured
lighting systems, multiple images, videos, and even a single
image [1, 2, 3, 4, 5]. We propose a method to produce laser
scan quality 3-D face models from a low-cost, low resolution
depth camera.

In this paper, we leverage the recent developments of 3-D
sensor technologies such as the Primesense [6] camera, which
can provide both a standard RGB image and a depth image
containing the 3-D information at 30 frames per second in
VGA format. It can also provide RGB information is SXGA
format at 15 frames per second. The input to our system is a
depth video stream acquired by a low-cost 3-D camera, with
the user freely moving in front of it.

Getting an accurate 3-D face model from the 3-D cam-
era is a challenging problem. Indeed, the quality of a single
frame is not sufficient to generate reasonable 3-D face mod-
els. First, the data is of low resolution. Second, the sensor
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computes a depth map based on the triangulation principle
given correspondences between stored pattern and projected
pattern. Hence, depth data near boundaries can be very noisy
and simple averaging on time is not sufficient.

The main idea to compensate for the noisy depth data is
to use several poses, accumulate and refine noisy information
through time. This can increase the resolution of the sensor
by filtering the provided information.

The first frame, containing a near frontal face is set as a
reference, and is used to generate both a 3-D point cloud and
an unwrapped cylindrical 2-D image. Given a new frame, we
convert the depth map into a 3-D point cloud and register it
with respect to the reference point cloud.

To accumulate multiple views from a moving face, we
propose to use unwrapped cylindrical 2-D images in canoni-
cal form, which is a well-known technique to represent a 3-D
face [7, 3]. This method enables us to perform 2-D image-
based operations to filter out noisy input, instead of complex
3-D mesh processing. Also, a running mean is performed on
every pixel for temporal integration and a bilateral filter [8] is
used for spatial smoothing. Figure 1 shows the overview of
our approach.

Building a set of unwrapped cylindrical 2-D images en-
ables to add the information on previously occluded parts and
refine the bad information on the edges. However, any error
in 3-D pose estimation would impact the model. To mini-
mize the added noise, not only an accurate pose estimation
process but also a rejection process is necessary. We evaluate
the quality of unwrapped cylindrical 2-D images and remove
all those which may be due to facial expression changes and
partial occlusions.

The contributions of this paper are as follows.

e We infer a very accurate 3-D face model from a single
depth camera.

e The use of a set of unwrapped cylindrical 2-D images
allows us to use simple 2-D image processing algo-
rithms, making the process computationally efficient.

e A robust registration and a rejection method produce
reliable results in the presence of facial expression
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Fig. 1: Overview of the processing pipeline.

changes, partial occlusions and wide head pose angle
changes.

e The reconstructed 3-D faces are compared to laser scan
ground truth data.

e Our system runs in real-time.

In the following sections, we first review the state of the
art, then describe the details of the proposed approach, and
provide results.

2. RELATED WORK

3-D face pose estimation and registration. Our canonical
2-D map generation is based on accurate 3-D face pose esti-
mation which is a widely studied problem [9].

In appearance-based methods, head poses are discretized
in order to learn pose-related models. Morency [10] presents
the AVAM (Adaptive Viewbased Appearance Model) for
head tracking from stereo images which integrates differen-
tial computing and keyframe tracking paradigms. While 2-D
image-based approaches provide limited results in terms of
accuracy, recent works on pose estimation use increasingly
affordable 3-D sensors, either purely [11] or coupled with
RGB information [12]. In [13], ICP is used for pose esti-
mation from range data and shows good results in a small
range.

Recently, Fanelli [11] presented real-time head pose es-
timation without using GPU hardware, which estimates the
pose parameters from all surface patches within a regression
framework. However, the accuracy (about 5° in each axis) is
not sufficient for our registration.

3-D face modeling. Many proposed methods to build
a face model start from a generic model which is then de-
formed to fit the input face. Tang and Huang [4] create face
models by locating facial features on the input face and de-
form the generic face model accordingly. A deformable 3-D
face model was introduced to build a 3-D face from a single
image in [5]. Le [14] use a linear morphable model on two
stereo images to accurately reconstruct the 3D face shape.
In [2], Zollhofer builds a 3-D model using the Microsoft’s
Kinect sensor. He fits a generic face model to the scans

and refines the registration thanks to features detected in the
RGB space. All these methods provide decent results but the
generic model tends to bias the reconstructed model.

A data-driven face modeling by taking advantage of SfM
(Structure-from-Motion) technique with five different views
is proposed in [3]. The reconstructed models are very accu-
rate but the process requires high-resolution images.

State of the art methods that provide very high quality face
models require a special equipment, such as [15], or a studio
environment [1, 16]. In [1], the user has to be scanned in a
ball-shaped light stage with 156 LED lights that captures the
face’s geometry and reflectance. [16] uses a setup of 14 high
definition video cameras to capture small patches of the face
surface, then applies an iterative binocular stereo method to
reconstruct the model.

In [17], KinectFusion system takes live depth data from a
moving Kinect camera and creates a high-quality 3-D model
for a static scene object. Later, dynamic interaction has been
considered in [18] where camera tracking is performed on a
static background scene and foreground object is tracked in-
dependently of camera tracking. Aligning all depth points
with the complete scene model from a large environment (e.g.
room) provides very accurate tracking of the camera pose and
mapping [17]. However, this approach does not provide ac-
curate results for faces.

Our approach does not rely on any prior face model and
can produce faithful geometric models of star-shaped objects
with an affordable noisy low-resolution sensor in the presence
of free head motion of a subject.

3. 3-D FACE MODELING

3.1. Accurate and robust registration for canonical 2-D
map

The main idea is to use registration between the input point
cloud and the point cloud from the reference frame. Note that
we could register consecutive images and incrementally infer
the pose. However, such methods require a really accurate
pose computation since any drift would be propagated. Using
a reference frame is thus more robust and can recover the pose

1996



Fig. 2: Head pose estimation examples for high roll value (top-left),
high yaw value (top-middle), small occlusion (top right), high posi-
tive pitch angle (bottom-left), negative pitch angle (bottom-middle)
and expression change(bottom-right).

at any time after an error occurs.

The rigid transformation between the reference frame and
the current input is computed by a registration algorithm [19,
20]. We set the first frame as a reference frame. Every new
input is registered to that reference frame. At each frame, we
segment the face region and sample the points on the face to
get an input point cloud.

In our approach, the pose is estimated thanks to EM-ICP
on CUDA [21], which enables to obtain real-time perfor-
mance [20]. The approach does not rely on any specific facial
feature which can be challenging to detect depending on the
pose.

Note that the initialization step is critical for both accu-
racy and speed. A wrong initialization would either make the
system really slow or converge towards a local minimum and
do not provide the desired results. This is handled by initial-
izing the transformation matrix at time ¢ by the value it had at
time (#-1). This hypothesis holds since the difference of object
position is typically small between two consecutive frames.

Our module provides good pose estimation results for
—40° to 70° for pitch angles, —70° to 70° for yaw angles and
360° for roll angle, which is enough for casual behavior in
front of a camera. The system can handle some occlusions,
some translations along Z and expression changes (Fig. 2).
Moreover, it can recover if the person goes out of the field of
view and back in.

Our system runs at 6 frames per second on a GeForce
GTX460. We use around 1, 000 points for each frame, which
provides a good trade-off between speed and accuracy.

3.2. Canonical 2-D map

The key idea for modeling is to accumulate information
through time. By processing a video with several poses for
the face, we fill in the information missing in a single image.
Moreover, the noise of the depth information provided by the
sensor can be significantly removed by filtering in both space
and time.

The main goal is to add the information provided at each

Fig. 3: Cylindrical representation. A cylinder is set around the face
(left). The 3-D information is projected onto the cylinder (middle),
giving an unwrapped depth map (right).

new frame to the model. Two challenges appear. First, the
new information should be aligned to the model accurately if
we want a consistent result. Second, we want to aggregate the
information efficiently.

A cylindrical model is used. This has proven to give good
results, as in [7, 3]. Practically, a cylinder is set around the
face in the reference frame. The axis of the cylinder is the
vertical axis going through the middle of the head, whose lo-
cation is loosely estimated by taking the middle of the face
and setting the z value 10cm deeper than the closest point.
Note that an approximate location of the axis is sufficient.

The geometry of a facial surface can be represented us-
ing an unwrapped cylindrical depth map D, where the value
at D(6, y) is the horizontal distance p to the cylinder axis
(Fig. 3). Figure 3 (right) shows an example of the unwrapped
map D generated from one image.

This model enables us to transform easily the 3-D data
into a 2-D image. It has several advantages. First of all, it
limits the amount of data to a single image, which is suitable
for an algorithm where information is endlessly added at each
new frame. Second, the 3-D data can be processed as a 2-D
image. Processing such as filtering becomes easy to use and
can be applied very fast. Third, meshes can be created eas-
ily and quickly by creating triangles among the neighboring
pixels on the image (Section 4).

The main drawback of this model is that it can handle
only star-shaped objects. However, it is suitable for a face
and enables fast computation.

3.3. 2-D image-based filtering

To obtain a smooth model, we remove the noise from both the
input data and the error in pose estimation by the combination
of temporal integration and spatial filtering (Fig. 4).

First, we apply a running mean on the p value of each
pixel of the unwrapped cylinder map. This temporal inte-
gration reduces the intrinsic noise while aggregating the data
(Fig. 4).

After aggregating the whole data, the obtained model
is still not perfect and has to be refined. For each row in
the cylindrical map, we apply a simple linear interpolation
method to fill up the remaining holes. Note that linearly inter-
polated points in the 2-D map fall on a 3-D circular arc in the
original space. Then, we process the unwrapped cylindrical
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Fig. 4: Noise removal using filtering: Accumulated raw input (a),
Running mean only (b), Bilateral filtering only (c), Both filters (d).

Fig. 5: Overlapping error. The model is displayed in green and the
new frame in red (top line). The intensity shows the overlapping
error (bottom line) in case of good registration (left), bad registration
(middle) and occlusion by a hand (right).

map to remove the remaining noise (Fig. 4).

We choose to apply a bilateral filter [8], which removes
noise while keeping the edges.

As mentioned earlier, a good head pose estimation is
needed to get a good model. In order to handle pose esti-
mation failure, we reject images in which the pose could not
be properly computed. Let us note M and I the unwrapped
cylindrical images containing respectively the model and the
new image. We simply reject [ if the difference between M
and [ is too large. Rejected images are those in which the
registration was poor or where an object was occluding the
face (Fig. 5).

4. MESHING AND TEXTURING

To create the mesh, we use neighboring pixels of the un-
wrapped cylindrical 2-D image containing the model. A
mesh is a triangle whose corners are neighboring pixels. Note
that our representation is very flexible is terms of resolu-
tion. We can easily predefine areas in the unwrapped image
where more resolution is needed (i.e. the nose) and reduce
resolution elsewhere (cheeks, forehead, etc.).

Adding the color information is another complex prob-
lem. Applying a similar algorithm on the RGB input does not
provide good results. Indeed, averaging makes every part of
the face blurry and the result does not look natural.

In order to get a crisper texture, we use only one image,
which is the reference image. When the 3-D information of
the model is computed, every point of the model is projected
onto this image in order to get the RGB value.

Fig. 6: Reconstructed model of a user (left) rendered in Mesh-
Lab [22] with texture (center) and without texture (right).

Fig. 7: Reconstruction of several people and objects.

5. COMPARISON RESULTS

In our experiments, we choose a size of 360 x 200 for the un-
wrapped cylindrical map. We work on a single-core Windows
7 (x32) system with a 2.79 GHz processor. GPU is used for
pose estimation and uses a GeForce GTX460. It takes about
10ms to add a new frame and we can get a complete model in
about 10 seconds of live video.

We built many face models. The results are visually accu-
rate, especially the 3-D shapes (Fig. 6 and 7).

To quantify the accuracy of our model, we compare it to a
commercial laser scan (Fig. 8a and 8f) from Cyber F/X [23].
The first thing to notice is that our method can get depth for
the hair while the laser scanning systems cannot. That is why
the error on the hair region needs to be ignored. We can see
that our model is very close to a laser scan (Fig. 8). The aver-
age error is about 1 mm (Fig. 9).

Besides, we ran Kinectfusion 10 times on the Asian face
and collected the best results. The reconstructed 3-D faces
did not capture details of the face structure (Fig. 8c).

6. CONCLUSION

We have proposed and implemented an efficient, 3-D face
modeling method. The key of our approach is the combina-
tion of temporal integration and spatial smoothing to reduce
the noise. Reducing the noise in each pixel results in reducing
the variance of the data, which enables to increase the preci-
sion and get a higher resolution.
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Fig. 9: Error distribution.

Experimental results with laser scan data confirm the ac-
curacy of reconstructed models. Our method also performs
as well as other state of the art methods while using a low-
cost low-resolution noisy sensor. We will present a live demo,
showing excellent face modeling results under large motion,
fast movement, occlusion and facial expression variations.

The most obvious thing to improve is the texture infor-
mation of the model. Lighting modeling and photometric
calibration among RGB images is possible, given the recon-
structed 3-D surface.
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