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ABSTRACT
Learned sparse signals representations led to state-of-the-art
image restoration results for several problems in the field of
image processing. In this paper we show that these are achiev-
able for a compressive sensing (CS) scenario based on the
sparsity pattern provided by learned dictionary specially de-
signed for the scalable data representation. Experimental re-
sults demonstrate and validate the practicality of the proposed
scheme making it a promising candidate for many practical
applications involving both time scalable image/video display
and scalable frame compressive sensing. Provided simula-
tions involve CS scalable sparse recovery of dynamic data
changing over time e.g., video. These are important for situ-
ations where video streams, tailored to the needs of a diverse
user pool operating heterogeneous display equipment, are re-
quired. For the aforementioned purpose the proposed method
outperforms the conventional K-SVD algorithm.

Index Terms— Sparse encoding, scalable video repre-
sentation, regularisation, compressive sensing

1. INTRODUCTION
The sparse coding paradigm is a critical factor for recent
breakthrough results in the field of image processing. Its
main foundation is the assumption that signals (e.g., natural
images) are subject to a linear sparse decomposition over a
learned dictionary. This so-called sparseland model [1] has
led to new generation of state-of-the-art algorithms for sev-
eral image processing problems [1] stating that the dictionary
D ∈ 𝑅𝑛×𝐾 can be trained for any image signal class Y.
Typically the dictionary D is redundant e.g., the number of
its basis vectors (atoms) is greater than the original signal
dimension (𝐾 > 𝑛). Given one of the pursuit algorithms
e.g., [2][3] and a dictionary D, one can retrieve matrix X con-
taining sparse approximations {x𝑖}𝑁𝑖=1 ∈ 𝑅𝐾 of each signal
y𝑖 ∈ 𝑅𝑛 i.e. extracted image patch from Y. Thus, we can
approximate the image as Y ≈ DX, a collection of weighted
linear combinations of a few atoms in D given each patch
y𝑖. For example, K-SVD algorithm [1][4] is one of the cur-
rent state-of-the-art algorithms for unsupervised dictionary
learning procedure. It efficiently tackles and solves numer-
ous image processing tasks such as denoising, inpainting and
demosaicing, both for grayscale [1] and colour [5] images.

Sparse signal decomposition also plays an important role
in the reconstruction performance of the compressive sam-
pling (CS) [8][2], commonly in the form of some predefined
transform basis e.g., Discrete Cosine Transform (DCT) [6],
wavelets [7] etc. This emerging framework has gained an in-
creased interest over the past few years by introducing innova-
tive and revolutionary signal processing mathematics. Specif-
ically, CS carries out joint signal compression and sampling,
enabled with specially designed measurement matrix Φ ∈
𝑅𝑆×𝑛 that takes random undercomplete set of samples y𝐶𝑆 ∈
𝑅𝑆 (𝑆 << 𝑛) as y𝐶𝑆 = Φy = ΦDx. This simple linear ran-
dom projections of the source signal y are aiming to replace
the conventional acquisition process i.e. the Nyquist sampling
paradigm assuming that treated signal is sparse rather than
band-limited. The second important concept upon which CS
relies (in order to obtain robust signal reconstruction) is in-
coherent sampling. That is, vector elements of both repre-
sentational and sensing basis (D and Φ ) should exhibit low
coherence satisfying the so-called restricted isometry prop-
erty (RIP) [2]. With one of the non-linear pursuit algorithms
e.g., [3], the sparsest representation of y is commonly restored
from sampled measurements y𝐶𝑆 . Furthermore, a small num-
ber of recent publications challenge the typical CS opera-
tional setting by taking into consideration learned dictionar-
ies [9][10] rather than commonly used off-the-shelf sparsify-
ing representational basis e.g., [6][7]. This research direction
is backed up by results in [10] where authors put forward a
scheme that jointly trains and optimises overcomplete non-
parametric dictionary and the CS sensing matrix Φ .
Additional employment of the sparse signal decomposi-

tion is demonstrated in [6] for progressive signal reconstruc-
tion in time. By sampling more and more data in incremen-
tal steps, one is able to provide a scalable image/video dis-
play. In particular, this aims to support diverse applications in
terms of user equipment heterogeneity, communication chan-
nels and QoS demands. In [6] a scalable signal representa-
tion is achieved with the conventional DCT dictionary rather
than learning the best dictionary tailored to this task. Hence,
a procedure for learning a dictionary capable of adapting to
a specific dataset and providing its effective scalable recon-
struction is still missing.
This paper addresses for the first time an integration of

a trained adaptive dictionary [11] specialised for scalable
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high-motion video sequences reconstruction by extending
the K-SVD algorithm and CS scalable framework (inspired
by [6]). This aims to achieve the frame by frame joint CS
scalable sampling/compression recovery where progressive
restoration in time is achieved by attaining more and more
sparse coefficient’s entries per patch of each frame. The main
contribution of the proposed work is that it provides an uni-
fication of the adaptive scalable sparse image representation
with scalable CS sensing. The practicality of the proposed
method is illustrated for the general scalable recovery and
CS scalable recovery of high-motion video sequences. All
frames are reconstructed via a single trained scalable dictio-
nary. Experimental results confirm that the proposed scalable
scheme outperforms conventional K-SVD.
In summary, we emphasize that the simple yet power-

ful remodelling of the traditional K-SVD algorithm by reg-
ularising the dictionary learning process facilitates a sparse
signal representation in a scalable i.e. progressive manner.
This broadens its practical potential especially by integrat-
ing it into the traditional CS method aiming to achieve scal-
able CS recovery. Due to space limitations the reader is re-
ferred to [1][4] for more details on the the state-of-the-art al-
gorithms for sparse coding K-SVD and to [2][8][10][12] for
background information on CS paradigm.

2. SCALABLE DICTIONARY MODEL
DESCRIPTION

Adhering closely to the notation used in [4], this section cov-
ers the description of the method proposed in [11]. As a basis
for our technique we take the regular K-SVD algorithm [4]
and build upon it by alternating one of its two main iterative
stages i.e. dictionary update. In general, we are given a set
of N signals i.e. overlapping image patches size

√
𝑛 × √

𝑛
vectorised asY = [y1, . . . ,y𝑁 ] ∈ 𝑅𝑛×𝑁 . The classical con-
figuration of the K-SVD algorithm aims to represent these
signals as linear combinations of a few dictionary elements:
the columns of matrixD = [d1, . . . ,d𝐾 ] ∈ 𝑅𝑛×𝐾 . Training
of D is performed simultaneously with an estimation of the
matrix containing sparse coefficients X = [x1, . . . ,x𝑁 ] ∈
𝑅𝐾×𝑁 . Once iterative learning is completed each signal in
Y is approximated by y𝑖 ≈ Dx𝑖.
Note however that this conventional approach is not able

to deliver scalable and adaptive image representation that
would be based on the progressive recovery of each image
patch y𝑖. For example, one can form recovery layers denoted
as L𝑠𝑎 with {𝑠𝑎 ∣1 ≤ 𝑠𝑎 ≤ ⌊𝐾/𝑚⌋,𝑚 < 𝐾} over each patch
i.e. image. At the beginning of the scalable reconstruction
process, the image base layer L1 consists of the first𝑚 sparse
coefficients entries per patch. Each subsequent layer L𝑠𝑎
(𝑠𝑎 > 1) contains an additional 𝑚 coefficient values. This
problem is addressed by introducing a regularisation scheme
over the second K-SVD iterative stage [11] i.e., dictionary
atom update step. This provides an effective scalable and
adaptive image reconstruction model for the image data that

exhibits sparse representation.

2.1. Sparse coding stage

The first of the two iterative dictionary learning stages (sparse
coding) is addressed as a constraint optimisation problem
similar to [4], where the optimisation objective:

min
X

{
∥Y −D𝑠𝑐X∥2𝐹

}
𝑠.𝑡. ∀𝑖 ∥x𝑖∥0 ≤ 𝑇0 (1)

is met by OMP [3]. 𝐾 denotes the number of atoms in D𝑠𝑐

that is the complete scalable dictionary kept fixed during this
training phase. Signal y𝑖 (i = 1, . . . ,N), extracted from the
original imageY, is mapped into its sparse representation x𝑖

via [3]. Each of the K entries x𝑖[𝑙] corresponds to one of the
atoms d𝑙 ∈ D𝑠𝑐 (l=1,. . . ,K) where x𝑖[𝑙] = 0 means that par-
ticular atom d𝑙 does not participate in the sparse representa-
tion of the signal y𝑖. The pseudo norm ∥⋅∥0 accounts for the
number of non-zero elements in x𝑖, bounded with an upper
constraint 𝑇0. The method in [11] relaxes sparsity constraint
𝑇0 by allowing it to take a greater value than one defined by
[4] in order to establish the scalable signal recovery. This
change is introduced on an empirical basis, still maintaining
sparsity notion of the signal representation.

2.2. Scalable dictionary update stage

The initialisation of the second stage is performed as in [4]
where an atom subject to update d𝑗 is changed while the rest
of the D𝑠𝑐 members are kept fixed. Prior to each update, d𝑗

is set to zero. The integration of the proposed regularisation
scheme is executed during the construction of the current rep-
resentational error matrix E𝑗 associated with the atom d𝑗 . In
[4] E𝑗 is defined as E𝑗 = ∣Y𝑗 −DX𝑗 ∣22. Y𝑗 is a subset
of image patches from Y which current sparse approxima-
tion X𝑗 includes atom d𝑗 (x𝑖 [𝑗] ∕= 0 ∈ 𝑋𝑗) while D is a
non-scalable dictionary. Unlike [4], we separate the sparse
representationX𝑗 into two components:

∙ Low frequency (smooth): Ylow
𝑗 = D𝑠𝑐X

low
𝑗 ;

∙ High frequency (texture): Yhigh
𝑗 = D𝑠𝑐X

high
𝑗 .

These two structural frequencies are denoted with super-
scripts low and high respectively. D𝑠𝑐 denotes the dictionary
for scalable presentation. Subsequently the residual matrix is
formed as:

E𝑗 =
∣∣∣Y𝑗 − 𝑣0D𝑠𝑐X

low
𝑗 − 𝑣1D𝑠𝑐X

high
𝑗

∣∣∣
2

2
. (2)

Weight pair (𝑣0, 𝑣1) regularises the contribution of the
texture and smooth image component to E𝑗 . This provides a
mean for controlling the type of the information used for the
atom’s update. The idea for introduced regularisation scheme
is driven by the well known perception characteristic of the
Human Visual System (HVS). Specifically, human eyes tend
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to pay more attention to the edges of an object, thus primar-
ily identifying objects by their shape. This property suggests
that HVS is most sensitive to high frequency image content
(edges). Motivated by this, we assume the following. In
order to achieve effective scalable recovery, the main object
shapes appearing within the image need to be identified from
the very start of the progressive image restoration process.
Hence, higher frequencies are more relevant to scalable dic-
tionary learning and need to be appropriately favored during
its training. This reasoning is confirmed by the series of ex-
periments where various weight pairs [𝑣0, 𝑣1] (with the con-
straint of 𝑣0 + 𝑣1 = 1) show that the introduced regularisa-
tion of the texture and smooth image component errors yields
the appropriate dictionary for scalable data presentation. The
overall algorithm is shown as follows:

1. STEP 1 - As in [4] initialise dictionaryD𝑠𝑐 with K ran-
dom extracted overlapping patches;

2. STEP 2 - Unlike [4] split each current sparse approxi-
mation inX𝑗 into:

∙ xlow𝑖 = x𝑖T
low and x

high
𝑖 = x𝑖T

high;

where Tlow,Thigh ∈ 𝑅𝐾 are binary vectors that set to
zero any x𝑖 [𝑙] element for 𝑙 > 𝐾

2 + 𝑐 and 𝑙 < 𝐾
2 − 𝑐,

respectively. By this theX𝑗 is decomposed into smooth
and texture patch information represented as matrices
Xlow

𝑗 andXhigh
𝑗 respectively. c is a constant integer term

set heuristically.

3. STEP 3 - Unlike [4] after decomposing the sparse rep-
resentation ofY𝑗 intoD𝑠𝑐𝑋

low
𝑗 andD𝑠𝑐𝑋

high
𝑗 what ac-

cordingly forms their representational residual term as:

E𝑗 =
∣∣∣Y𝑗 − 𝑣0D𝑠𝑐X

low
𝑗 − 𝑣1D𝑠𝑐X

high
𝑗

∣∣∣
2

2
;

4. STEP 4 - As in [4] perform rank-one approximation of
E𝑗 i.e., the Singular Value Decomposition (SVD): for
new d𝑗 atom set the eigenvector corresponding to the
largest eigenvalue of the 𝐸𝑗 SVD decomposition;

5. STEP 5 - Unlike [4] keep mutually coherent atoms;

By enforcing this type of the frequency content regularisa-
tion the learning process generates scalable dictionary D𝑠𝑐

tailored to the characteristics of HVS.

3. APPLICATIONS TO IMAGE PROCESSING

In order to demonstrate the efficacy of the proposed method,
we report simulation results both for scalable video encoding
and scalable CS. The performance is evaluated using video
test sequence “Stephan” and “Tempete” at CIF resolution
352 × 288 and a frame rate of 30Hz. Each frame is broken
down into total of 𝑁 = 96945 overlapping patches of 8 × 8
pixels. Hence, the vector signal size y𝑖 used for the scalable
dictionary learning algorithm and CS sampling is 𝑛 = 64

pixels. Both dictionaries, D𝑠𝑐 and D, contain 𝐾 = 𝑛 entries
resulting with redundancy factor 𝑟 = 1. The reason behind
employing complete (𝐾 = 𝑛) rather than commonly trained
overcomplete dictionary (𝐾 >> 𝑛) stems from conclusions
we drawn after performing numerous simulations. They have
shown that there is no significant difference between scalable
sparse restoration obtained via a complete or overcomplete
learnt basis. Secondly, a complete, orthonormal basis is com-
monly used for the implementation of the CS acquisition
procedure. Lastly, the effect of setting the redundancy to
𝑟 = 1 relaxes slightly the algorithm complexity reducing the
total training time since less atoms are trained.
The weight pair [𝑣0, 𝑣1] is set to values 1 and 0, respec-

tively. Detailed simulations shown that this parametrisation
yields the best trained scalable dictionary. Furthermore, 𝑇0 is
set to 10 (as pointed out in Sec. 2.1) relaxing the upper con-
straint on the sparsity level allowing for more than four non-
zero entries [4] per x𝑖. The scalable training scheme is carried
out only once for the first incoming frame in the “Stephan”
or “Tempete” sequence i.e., the training frame generating the
D𝑠𝑐 dictionary. Each subsequent frame for either of the il-
lustrated applications is reconstructed via a single D𝑠𝑐 given
scalable sparse encoding information or training frame CS
measurements. Hence, in the reported experimental results
only a single dictionary is maintained throughout the entire
sequence. Shown approach highly simplifies the computa-
tional complexity since training is done only once instead of
300 times. This is significant for the display of the real-time
scalable complex video streams. However, when the video
scene undergoes significant changes with respect to the train-
ing frame, a new training frame should be inserted.

3.1. Results for scalable video encoding
For every encoded patch and image, a total of ⌊𝐾/𝑚⌋ = 16
recovery layers are defined as 𝐿𝑠𝑎 (𝑠𝑎=1,...,16) with scal-
ability step 𝑚 = 4. At the user side, the base layer 𝐿1

is recovered given the trained dictionary D𝑠𝑐 and the first
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Fig. 1: Frame-average PSNR of the scalable reconstructed video
test sequence “Stephan” per each recovery layer 𝐿𝑠𝑎

using the scal-
able and non-scalable K-SVD algorithm
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(a) SC K-SVD training frame, “Stephan”

(b) NSC K-SVD training frame, “Stephan”

Fig. 2: Visual assessment of the scalable reconstruction using the scalable/non-scalable K-SVD at every recovery level 𝐿𝑠𝑎
.

four incoming coefficient values denoted as 𝑋1 ∈ 𝑅(4)×𝑁

while the rest of unknown entries are treated as zero. The rest
of the recovery levels are progressively enhanced by adding
four additional entries in each representational vector e.g.,
𝑋2 ∈ 𝑅(8)×𝑁 , . . . , 𝑋𝑠𝑎 ∈ 𝑅(𝑠𝑎∗𝑚)×𝑁 , . . . , 𝑋16 ∈ 𝑅(64)×𝑁

(per each 𝐿𝑠𝑎 , total of 𝑠𝑎∗𝑚 sparse coefficient values is avail-
able). This is done until the final 𝐿16 restoration level is at-
tained. Constant 𝑐 (Sec. 2) is heuristically set to value 2.
The objective quality assessment is provided in Fig. 1 in

a form of a PSNR only for video sequence “Stephan” due to
the space limitation. Given the scalable (“SC”) and conven-
tional (“NSC”) K-SVD algorithm we provide the comparison
for the the restoration quality averaged over two groups of
frames from the “Stephan” sequence: the first 270 ([1, 270])
and the last 30 ([271, 300]) . By working with these two sepa-
rate segments, we show to what extent the scalable restoration
quality will be affected once the new object is introduced in
the upcoming frame (group [271, 300]) while the initial D𝑠𝑐

is maintained for the recovery at the user side. The results
clearly demonstrate that the proposed regularised scheme out-
performs the standard [4] over all recovery levels 𝐿𝑠𝑎 on av-
erage by 10.8dB (first 270 frames). This trend is observable
as well for the second group of frames that contains a new
object i.e. a tennis net with a slight drop in the restoration
quality of 1.54dB. Only in the case when all of the informa-
tion on the sparse coefficients is available (𝑋16 ∈ 𝑅(64)×𝑁 ),
does the regular K-SVD algorithm have a slight advantage
over the proposed scheme.
An additional visual assessment of the scalable recovery

method is provided in Fig. 2 for reconstruction outcomes at
every recovery level 𝐿𝑠𝑎 , given the training frame from the
“Stephan“ sequence. Through carefully observation one can
confirm that the proposed scalable scheme is able to recover
the frame at a recovery level 𝐿3 (𝑋3 ∈ 𝑅(12)×𝑁 ) whereas [4]
fails to show any scalable characteristics at any level up to𝐿15

(𝑋15 ∈ 𝑅(60)×𝑁 ). Similar visual results were obtained for
the second video test sequence “Tempete” which is omitted
for brevity.

3.2. Scalable compressive sensing

Following closely the experimental layout suggested in [6],
here we assess the performance of the proposed scalable CS
video acquisition scheme unified with the trained scalable
dictionary 𝐷𝑠𝑐. In particular, the proposed framework aims
for frame-by-frame progressive CS recovery while analysing
the implications of the sub-Nyquist CS paradigm in the scal-
able and adaptive representational domain. Unlike in [6],
the image is processed block by block, likewise in the pre-
vious experimental section. In this way we investigate the
effectiveness of the scalable CS paradigm when combined
with a learned basis rather than a predefined one. Mainly,
we take into consideration two cases of CS scalable recov-
ery: (i) with the scalable K-SVD dictionary tailored to this
task; (ii) with the conventional non-scalable K-SVD dictio-
nary. Sensing is performed sequentially in the sparse repre-
sentation domainX = [x1, . . . ,x𝑁 ] ∈ 𝑅𝐾×𝑁 for each frame
X in incremental steps. Given the sufficient number of mea-
surements for each image patch represented as a collection of
s1, s1+ s2, . . . , s1+ s2+ . . .+ s𝐿 (

∑𝐿

𝑖=1 𝑠𝑖 < 𝐾) we are able
to recover the frame gradually by collecting entries of sparse
coefficients in X𝑖. Furthermore, each value 𝑠𝑖 satisfies the
fundamental result of the CS theory [2] that imposes the limit
on the necessary number of measurements for exact signal re-
construction. Unlike in the conventional CS setup defined as
y𝐶𝑆 = Φy = ΦD𝑐𝑠x, here we specially structure (size-wise)
the sampling matrix Φ in order to achieve efficient scalable
sampling of each image layer. This is carried out using the
systematic non-adaptive approach [6] where for each recov-
ery step we have Φ𝑖 ∈ 𝑅𝑠𝑖×𝐾 resulting in y𝑖𝐶𝑆 samples.
Starting from a base level for i = 1 and 𝑠1 = 10 with
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y1𝐶𝑆 = Φ1y = Φ1D𝑐𝑠x (around 15 % for each sparse coeff-
cient denoted as xi) we advance through enhancement layers
with additional five samples (e.g., 𝑠1 + 𝑠2 = 15) in each step
until the total number of 𝑆 = 30 < 𝐾 samples is reached.
Hence, total of five sampled layers are recovered. Fig. 3
shows reconstruction via the proposed adaptive scalable CS
averaged over frames, given the single trained dictionaryDsc

for two video test sequences. The measurement number of
interest over each frame is less than 50 %. Reconstruction
is perfromed using OMP [3]. The gap between the perfor-
mance of the two methods is evident for the layers sampled
at low subrates i.e. one and two, at around 2.25dB in case
of “Stephan” sequence and, in additional third layer for the
“Tempete” frames at 2.96dB respectively. We can see that
proposed design is successful for the low subsampling factors
(e.g., 15%, 23 % and 31 % of sampling information) whereas
the conventional K-SVD overtakes the lead as more measure-
ments are added. However, in the context of the CS pardigm,
this is not relevant since it imposes a low compression rate
during sampling.

4. CONCLUSION

This work introduces an integrated combination of a learning
dictionary framework for scalable image recovery and adap-
tive scalable CS. Mainly, this is achieved by regularising the
K-SVD dictionary update stage together with CS structured
sampling. To the best of our knowledge this problem has not
been addressed before in the context of learned sparse rep-
resentations. Overall the experimental results are promising
and demonstrate that the proposed method significantly out-
performs the classical K-SVD setting and that it can be suc-
cessfully used for CS scalable display of the complex video
streams. Future work will analyse achieved coherence levels
and the extent to which the RIP term is satisfied, given the
adaptive scalable learned basis and random sampling matrix.
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