
ACOUSTIC TOMOGRAPHY OF THE ATMOSPHERE USING UNSCENTED KALMAN
FILTER

Soheil Kolouri and Mahmood R. Azimi-Sadjadi

Colorado State University
Electrical and Computer Engineering Department

Fort Collins, CO, 80523-1373 USA
Email: azimi@engr.colostate.edu

ABSTRACT

Acoustic travel-time tomography of the atmosphere is a non-
linear inverse problem which attemps to reconstruct tempera-
ture and wind velocity fields in the atmospheric surface layer
(ASL) using the dependence of sound speed on temperature
and wind velocity fields along the propagation path. A new
statistical-based algorithm is introduced in this paper based on
fixed-point unscented Kalman filter (UKF) which is capable
of reconstructing and tracking temperature and wind velocity
fields within a specified investigation area.

Index Terms— Acoustic Tomography, Unscented Trans-
form, Unscented Kalman Filter

1. INTRODUCTION

Monitoring temperature and wind velocity fields in the atmo-
spheric surface layer has always been of great importance in
different disciplines, such as boundary layer meteorology, and
studies of wave propagation through a turbulent atmosphere.
The conventional approach to measure these fields is to use in-
situ thermo-anemometers. However employing these sensors
within the investigation area has two major drawbacks. First,
this is not an economically viable solution as a large num-
ber of such rather expensive sensors is needed to achieve an
acceptable spatial resolution. Moreover, deploying these sen-
sors in an investigation area may distort the measured fields
and hence leading to inaccurate measurements.

Acoustic tomography 1 technique is a popular method [1,
2, 3] that has been used in order to measure temperature and
wind velocity fields with minimal interference in the investi-
gation area as well as lesser cost. Acoustic tomography’s goal
[1, 2, 3] is to estimate temperature and wind velocity fields in
an investigation area given the characteristics of the sound
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1Note: Throughout this paper ”acoustic tomography” is used frequently
instead ”acoustic time-travel tomography”.

sources, the coordinates of sensors and the travel time for
acoustic propagation paths. In [1], the authors showed that us-
ing acoustic tomography is highly beneficial, as it uses a small
number of acoustic sensors to reconstruct the temperature and
wind velocity fields with high spatial resolution. Several other
acoustic tomography methods have recently been introduced
that can be categorized as statistical-based algorithms [1, 3],
algebraic-based algorithms [2] and those which use sparse
reconstruction framework [4]. Among the statistical-based
methods are the stochastic inversion (SI) [1] and the time-
dependent stochastic inversion (TDSI) [3] methods. The si-
multaneously iterative reconstruction technique (SIRT) in [2]
belongs to the algebraic-based category.

In this paper, a new statistical-based approach toward
solving the acoustic tomography problem is presented which
casts the problem as a nonlinear state-estimation problem
in which states represent the temperature and wind veloc-
ity fields in each grid over the monitored area. Unscented
Kalman filter (UKF) [5] is employed to estimate and track
these states at every time snapshot. UKF is based on Un-
scented Transform method which does not require lineariza-
tion of the state or observation equations. The proposed
method uses 3-D autoregressive (AR) models to capture
spatial-temporal dynamics of the temperature and wind ve-
locity fields and offers a robust and accurate solution to the
acoustic tomography problem.

This paper is organized as follows. Section 2 reviews
the acoustic tomography problem formulation. The proposed
acoustic tomography method is described in detail in Sec-
tion 3. Finally, Section 4 shows the results of the proposed
method.

2. PROBLEM FORMULATION

The travel time for an acoustic wave to propagate from a
source to a receiver is a function of temperature,wind velocity
(air flow) and humidity along the path [1, 2, 3]. However, the
effect of humidity on the travel time is somehow negligible
and hence is typically be ignored. In the absence of wind, an
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acoustic wavefront propagates with Laplace sound speed [1],
given by

c2L = γRaTav, (1)

where γ ≈ 1.41 denotes the ratio of specific heat capacities
at constant pressure and volume, Ra is the universal gas con-
stant for dry air and Tav is the acoustic virtual temperature
which is related to the thermodynamic temperature Tth, as
Tav = Tth(1 + 0.511q) , with q being the specific humidity
defined as the ratio of water vapor to moist air.

In the field experiments though, wind velocity signifi-
cantly impacts the time of arrivals and can be formulated
as:

v(r, t) = α(r, t)cos(θ(r, t))ex +α(r, t)sin(θ(r, t))ey, (2)

where ex and ey are the unit vectors of a 2D-Cartesian coor-
dinate system, r = xex+yey is the position vector of a point
on the investigation area, and α(r, t) and θ(r, t) are magni-
tude and direction of the wind velocity at position r and time
t, respectively. Therefore, the sound speed along the sound
ray can be defined as:

cray(r, t) = s.(cL(r, t).n+ v(r, t)), (3)

where s and n denote the unit vectors in the direction of sound
propagation and normal to the wavefront, respectively.

The straight-ray model for acoustic propagation which is
the simplest model typically used in most literature is valid
for sound propagation distances of few hundreds of meters,
when the temperature and wind velocity fields are smooth
and the speed of wind is much less than the Laplace sound
speed cL. For the straight-ray model, s and n are in the same
direction and hence s.n ≈ 1. However, in the presence of:
(a) large temperature or wind velocity gradients; and (b) high
wind speed, using the straight-ray model leads to non-unique
solutions of the wind velocity field [4]. If time-synchronized
acoustic signatures at various sensor nodes are available, one
can use direction of arrival (DOA) estimation methods [6] to
improve the accuracy of the wind velocity field reconstruction
[4].

Assuming a straight-ray model for sound propagation, the
sound speed along a propagation path can be written as:

cray(r, t) = cL(r, t) + s.v(r, t). (4)

Based on (4) which is a well-known relation for the effec-
tive sound speed, the travel time formula for the n’th path is
defined as:

τn(t) =

∫
Ln

dln
cray(r, t)

=

∫
Ln

dln
cL(r, t) + sn.v(r, t)

, (5)

where the integration is along the n’th propagation path, Ln

is the length of the n’th propagation path and sn is the unit
vector in its direction .

In order to be able to estimate the fields in the investi-
gation area, almost all existing methods [1, 2, 3] discretize
the investigation area, into grids and assume that cL(r, t) and
v(r, t) are spatially constant in each grid. Using I × J grids,
(5) can be discretize as:

τn(t) = ΣI
i=1Σ

J
j=1

dn(i, j)

cL([i, j], t) + sn.v([i, j], t)
. (6)

Here dn(i, j) is the distance n’th propagation path travels
in the (i, j)’th cell, cL([i, j], t) and v([i, j], t) are the Laplace
sound speed and the wind velocity vector in the (i, j)’th grid
at time t, respectively and are demonstrated in Figure 1.

Fig. 1. (a) The layout of the STINHO field experiment (b)
Discretization process

The term sn.v([i, j], t) in (6) can be written as:

sn.v([i, j], t) = α([i, j], t)cos(θ([i, j], t))cos(ϕn) +

α([i, j], t)sin(θ([i, j], t))sin(ϕn), (7)

where α([i, j], t) and θ([i, j], t) are respectively the ampli-
tude and the angle (with respect to ex) of wind velocity in
the (i, j)th grid at time t and ϕn is the angle of the n’th prop-
agation path with ex. The goal of acoustic tomography is then
to find cL([i, j], t), α([i, j], t) and θ([i, j], t), for i = 1, ..., I
and j = 1, ..., J , given coordinates of the acoustic transmit-
ters and receivers deployed in the field and the travel times
between each transmitter and receiver, τn(t)s, recorded for
all propagation paths and at each snapshot t.

3. ACOUSTIC TOMOGRAPHY USING UKF
METHOD

UKF employs unscented transform [5] to estimate the distri-
bution of a posteriori state without the need for any lineariza-
tion by propagating through the nonlinear functions [5].

Here, the Laplace sound speed, wind velocity amplitude
and wind velocity angle at all grids are arranged to form the
state vector.

xt = [cL(t)
T ,α(t)T ,θ(t)T ]T , (8)
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where cL(t) = [cL([1, 1], t), cL([1, 2], t), ..., cL([I, J ], t)]
T

is the column vector of the Laplace sound speeds at every
grid, and similarly for α(t) and θ(t). The observation vec-
tor, yt, on the other hand, consists of time of arrival mea-
surements for all acoustic propagation paths. That is, yt =
[τ1(t), ..., τN (t)]T , where τi(t) is the travel time for the i’th
path at snapshot t.

3.1. State Evolution Process

Since the fields don’t change abruptly from one snapshot to
the next, a reasonable model to capture the state dynamics
is an autoregressive (AR) model. The adjacent neighbors at
time t− 1 are used as the support region for each grid at time
t. For instance, the state evolution equation for the Laplace
sound speed at time t is defined as follow

cL(t) = A(cL)cL(t− 1) + ucL(t) (9)

where ucL(t) is the column vector of the Laplace sound speed
deriving process. Matrix A(cL) is a block Toeplitz matrix with
Toeplitz blocks, and for the case of using a 4 × 8 grid it is
defined as the right-stochastic (each row is normalized by the
sum of the elements) of the matrix A′(cL) which is defined as,

A′(cL) ≜



B C 0 0 0 0 0 0
C B C 0 0 0 0 0
0 C B C 0 0 0 0
0 0 C B C 0 0 0
0 0 0 C B C 0 0
0 0 0 0 C B C 0
0 0 0 0 0 C B C
0 0 0 0 0 0 C B


(10)
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0 ρ
cL
2 ρ

cL
1 ρ

cL
2

0 0 ρ
cL
2 ρ

cL
1


(11)

The AR coefficients ρcL0 ,ρcL1 and ρcL2 are estimated based on
Yule-Walker method, using either training data set if in-situ
measurements are available or assuming a specific spatial-
temporal correlation structure [3] for each field. Similarly for
α(t) and θ(t) we have

α(t) = A(α)α(t− 1) + uα(t)

θ(t) = A(θ)θ(t− 1) + uθ(t), (12)

here uα(t) and uθ(t) are, respectively the driving process for
amplitude and the angle of wind velocity and matrices A(α)

and A(θ) are calculated in a similar manner as A(cL). Note
that the AR models are assumed to be decoupled from each
other as the phenomena that generate them are independent.
Combining these decoupled equations yields

xt = Axt−1 + ut, (13)

where ut = [ucL(t)
T ,uα(t)

T ,uθ(t)
T ]T is the augmented

deriving noise vector which is assumed to be Gaussian with

zero mean and known covariance matrix Ru and matrix A is

A =

 A(cL) 0 0
0 A(α) 0
0 0 A(θ)

 . (14)

3.2. Observation Process

The relationship between state xt and observation vector yt

at time t is given by (6) and (7) which is a nonlinear function
of the state variables.

yt = H(xt) + vt, (15)

where vt stands for measurement noise caused by such things
as,(i) errors inherent in the griding process (ii) error in mea-
suring the time of arrivals, and (iii) sensor location error and
it is assumed to be a Gaussian random vector with zero mean
and known covariance matrix, Rv. The most dominant source
for this error is (i). The nonlinear function H(xt) is explicitly
defined as

H(xt) =


ΣI

i=1Σ
J
j=1

d1(i,j)
cL([i,j],t)+s1.v([i,j],t)

...
ΣI

i=1Σ
J
j=1

dN (i,j)
cL([i,j],t)+sN .v([i,j],t)

 (16)

3.3. Fixed-Point Iterative UKF Equations

In the case of large uncertainty in the choice of the initial
error covariance matrix P0|0 and weak observability of the
system, UKF exhibits slow convergence problem and poor
state estimation accuracy. Iterated UKF [7] is a more robust
version of UKF which not only iterates on every snapshot t
but also performs fixed-point iteration at each fixed snapshot
to get a more robust and accurate state estimates.

To apply fixed-point iterative UKF to any nonlinear state
estimation process, one needs to generate estimates of covari-
ance matrices Ru and Rv for the deriving noise and mea-
surement noise, respectively. The covariance matrix Ru is
generally estimated using either training data or assuming a
spatial-temporal correlation as mentioned before. The covari-
ance matrix Rv , on the other hand, can be estimated from
typical measurement data and the error in the measurement
devices. Given these matrices and defining xk|k(t) to be the
state estimate at k’th iteration on snapshot t, the fixed-point
iterative UKF steps for k ∈ [0,K] iterations on each snapshot
are:
3.3.1. Initialization

Fixed-point iterative UKF starts by initializing the state vector
estimate x̂K|K(0) (i.e. estimate of state vector, given obser-
vation at time t = 0). Additionally the corresponding state
error covariance matrix PK|K(0) is initialized with an iden-
tity matrix. The initial state vector at snapshot t is then set to
be x̂0|0(t) = x̂K|K(t − 1) and the corresponding covariance
matrix P0|0(t) = PK|K(t− 1).
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3.3.2. Generating Initial Sigma Points

Sigma points are 2L+ 1 point masses to approximate the in-
put distribution. Using the initial estimates x̂k−1|k−1(t) and
Pk−1|k−1(t) for the k’th iteration at time t, the sigma points
are calculated as follows

χ0,k−1|k−1(t) = x̂k−1|k−1(t)

χi,k−1|k−1(t) = x̂k−1|k−1(t) + γ
√

Pk−1|k−1(t)
[i]

χL+i,k−1|k−1(t) = x̂k−1|k−1(t)− γ
√

Pk−1|k−1(t)
[i]
, (17)

for i = 1 . . . L, where γ ≈ ϱ
√
L is a scaling parameter and

ϱ determines the spread of sigma points around x̂k−1|k−1(t)

and
√
Pk−1|k−1(t)[i] is the i’th column of the Cholesky factor

of Pk−1|k−1(t).

3.3.3. A Priori State Estimation

The initial sigma points are transformed through the state evo-
lution equation (13).

χ∗
i,k|k−1(t) = Aχi,k−1|k−1(t), i = 0, . . . , 2L (18)

A weighted sum of these transformed sigma points is cal-
culated to estimate the a priori state, x̂k|k−1(t), and covari-
ance matrix, Pk|k−1(t):

x̂k|k−1(t) =
2L∑
i=0

W
(m)
i χ∗

i,k|k−1(t), (19)

Pk|k−1(t) = Ru +

2L∑
i=0

(W
(c)
i [χ∗

i,k|k−1(t)− x̂k|k−1(t)]

[χ∗
i,k|k−1(t)− x̂k|k−1(t)]

T (20)

where the weights W
(m)
i s and W

(c)
i s are [8] as W

(m)
0 =

λ
λ+L , W (c)

0 = λ
λ+L + (1 − ϱ2 + β), and W

(m)
i = W

(c)
i =

1
2(L+λ) for i = 1, . . . , 2L with β being a constant used to
incorporate prior knowledge of the distribution of the state
vector and is set to β = 2 for Gaussian distributions.

3.3.4. Covariance Matrices Computation

New sigma points are calculated based on x̂k|k−1(t) and
Pk|k−1(t) to be fed into the nonlinear function H(.) in order
to estimate the measurement update, ŷk|k−1(t).

χ0,k|k−1(t) = x̂k|k−1(t)

χi,k|k−1(t) = x̂k|k−1(t) + γ
√

Pk|k−1(t)
[i]

χL+i,k|k−1(t) = x̂k|k−1(t)− γ
√

Pk|k−1(t)
[i]

(21)

for i = 1 . . . L.
The new sigma points are transformed through the non-

linear observation process(15), to yield:

Υi,k|k−1(t) = H(χi,k|k−1(t)) i = 0, . . . , 2L. (22)

The weighted sum, covariance matrix and cross-covariance
matrix of the measurement vector are calculated as

ŷk|k−1(t) =
2L∑
i=0

W
(m)
i Υi,k|k−1(t) (23)

Pyy,k(t) = Rv +
2L∑
i=0

(W
(c)
i [Υi,k|k−1(t)− ŷk|k−1(t)]

[Υi,k|k−1(t)− ŷk|k−1(t)]
T )

(24)

Pxy,k(t) =
2L∑
i=0

(W
(c)
i [χi,k|k−1(t)− x̂k|k−1(t)]

[Υi,k|k−1(t)− ŷk|k−1(t)]
T ) (25)

3.3.5. Kalman Gain Computation and A Posteriori State Es-
timation

These are used to generate the Kalman gain Kk(t), a poste-
riori state vector x̂k|k(t) and error covariance matrix Pk|k(t)
estimations:

Kk(t) = Pxy,k(t)P
−1
yy,k(t) (26)

x̂k|k(t) = x̂k|k−1(t) +Kk(t)(yt − ŷk|k−1(t)) (27)

Pk|k(t) = Pk|k−1(t)−Kk(t)Pyy,k(t)K
T
k (t) (28)

3.3.6. Iteration Step

If k < K then the algorithm proceeds to the next iteration
k+1 on the fixed snapshot t and redo steps 2 to 5. But if k =
K then it proceeds in time t + 1 and uses the estimated state
and error covariance matrix at time t as the initial values for
time t+1, x̂0|0(t+1) = x̂K|K(t) and P0|0(t+1) = PK|K(t)
and jumps to step 2.

4. RESULTS

In order to test our proposed UKF-based algorithm a data set
was acquired from the University of Leipzig, collected at the
Meteorological Observatory, Lindenberg, Germany, as part of
the STINHO project [9]. However, the lack of sufficient in
situ measurements for a complete evaluation of the developed
method motivated us to construct a synthetic but realistic data
set. The synthetic data was generated based on fractal Brow-
nian motion (fBm) model [10] for wind velocity and temper-
ature fields in the investigation area. To be more realistic the
field size and the sensor locations were chosen to be the same
as those in the STINHO experiment.

Figure 1 shows the layout of investigation field and the
locations of the virtual receivers and transmitters indicated by
Ri and Si, respectively. The field is of the size 300m×440m
with 8 transmitters and 12 receivers. The synthetic data is
generated for 500 subsequent snapshots of wind velocity and
temperature fields with spatial resolution of one meter and
temporal resolution of 12 seconds. Note that this choice for
resolution is chosen arbitrarily and can be changed. The time
of arrival for each sound ray path is then calculated using (15)
at each snapshot, choosing vt to be a white Gaussian process
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Fig. 2. Field reconstruction for snapshots 50 (top) and 150
(bottom).

with the variance σ2 = 0.01. This variance is chosen to fit
the uncertainty of measurements reported in [9] which is 0.3
millisecond for each measurement.

The first 5 snapshots of the synthesized data (1 minute
worth of synthesized data) were used as the training data to
estimate the AR model coefficients and the covariance matri-
ces Ru and Rv . Using the Yule-Walker method the 3-D AR
coefficients are estimated and used to reconstruct the temper-
ature, wind velocity amplitude and angle fields using steps
1-5 of the iterated UKF presented. Figure 2 illustrates the re-
sults of the field reconstruction for snapshots 50 and 150. The
reconstruction cells are of the size 75m × 55m, and the re-
construction error shows the difference between actual fields
(averaged at the grids) and the reconstructions. As can be
seen, the UKF-based method provides accurate results. The
computation time for the iterated UKF with K = 3 at ev-
ery snapshot is approximately 5sec on a computer with In-
tel Core i7 CPU, 12.0GB RAM, and 64bit operating system.
Thus, the proposed UKF-based method is highly computa-

tionally efficient, ideally suited for applications where near
real-time state estimation is required. Other unique benefits
include tracking ability of the fields, robustness to measure-
ment noise, and reconstruction accuracy when compared to
other statistical-based acoustic tomography methods.
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