
LIKELIHOOD UPDATING FOR GAUSS-GAUSS DETECTION

Nick Klausner and Mahmood Azimi-Sadjadi

Department of Electrical and Computer Engineering
Colorado State University

Electrical and Computer Engineering
Fort Collins, CO 80523-1373

azimi@engr.colostate.edu

ABSTRACT

This paper investigates the effects of incrementally adding
new data to the classical Gauss-Gauss detector for testing be-
tween the known covariance matrices in competing multivari-
ate models. We show that updating the likelihood ratio and J-
divergence as a result of general data augmentation inherently
involves linearly estimating the new data from the old. Using
the change in divergence and the eigenstructure of a whitened
error covariance matrix, a reduced-rank version of the update
is built. A simulation example of a single narrow-band source
in the sensing environment of multiple uniform linear arrays
(ULA’s) is given showing the practicality of adding data in
multi-static sonar applications.

Index Terms— binary hypothesis testing, detection, like-
lihood updating, multi-static sonar

1. INTRODUCTION

In multivariate detection [1], updating the likelihood function
and J-divergence, a measure of discrimination, when observa-
tions are augmented by new data is of great interest in order
to decide in-situ if and when the detector reaches a point of
diminishing return in adding sensory channels or which chan-
nels bring the largest increases in discriminatory information.

The evaluation of likelihood functions for the detection
and parameter estimation of Gaussian signals observed in the
presence of additive Gaussian noise is considered in [2]. The
author developed a detector for a signal-plus-noise model
both for discrete-time and continuous-time cases and derived
the updating equations for a signal modeled as a Markov pro-
cess. Similarly, in [3] a causal estimator-correlator version
of the discrete-time Gauss-Markov likelihood ratio is derived
that replaces the least squares estimator with one which is
locally stable. This locally stable estimate is shown to be a
compromise between the a priori and a posteriori state esti-
mators. When the observation noise covariance is unknown,
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an integral equation is derived by assigning a Wishart prior
to the innovations covariance which results in an appealing
parallel approximation of the likelihood ratio.

In this paper, we address the problem of updating the like-
lihood function and J-divergence by showing that, for a gen-
eral augmentation in our observation, we can always update
the likelihood ratio by adding quadratic error terms produced
from a discrete Wiener filter. The change in J-divergence
is then shown to involve error covariance matrices that are
matched/mismatched to the given hypothesis. This change
gives us some insight as to how the performance of the detec-
tor incrementally changes as we add additional measurements
to our observation. Additionally, when adding measurements
from disparate sources of information, such as multiple sen-
sor platforms, the change in J-divergence can be used to deter-
mine which platform’s observation should be added or when
adding observations from platforms reaches a point of dimin-
ishing return. Using a constructive procedure similar to that
presented in [1] for building low-rank detectors, we extend
the idea to build reduced-rank approximations of the likeli-
hood update. Simulation of a single narrow-band source in
the sensing environment of multiple ULAs is then considered
showing the practicality of analyzing the incremental addition
of multiple observations for in-situ detection in multi-static
sonar.

2. FULL-RANK LIKELIHOOD UPDATING

Consider the vector zk =
[
xH1 · · · xHk

]H ∈ Cm where xi
represents any arbitrary set of measurements, e.g. the ith re-
alization of a multi-variate time series, the observation from
the ith sensory channel, etc. Here, we assume that zk ∼
CN

(
0, Rzkzki

)
, i.e. a zero-mean complex normal random

vector with covariance matrix Rzkzk1
= EH1zkz

H
k under H1

(e.g., signal plus noise) and Rzkzk0
= EH0zkz

H
k under H0

(e.g., noise alone). Note that EH1 and EH0 denote expec-
tation conditioned upon the H1 and H0 hypotheses, respec-
tively. We then consider adding the vector xk+1 ∈ Cn to form
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the new augmented observation zk+1 =
[
zHk xHk+1

]H
which

we assume to remain complex normal with covariance struc-
tureRzk+1zk+11

underH1 andRzk+1zk+10
underH0. No spe-

cific structure is assumed for any covariance matrix with the
only restriction that they be positive definite. To decide which
models most likely generated the measurements zk and zk+1,
we construct the log-likelihood ratio functions representing
simple quadratic detectors [1]

l(zk) = zHk
(
R−1

zkzk0
−R−1

zkzk1

)
zk

and

l(zk+1) = zHk+1

(
R−1

zk+1zk+10
−R−1

zk+1zk+11

)
zk+1,

respectively. Taking advantage of the inherent block structure
in these covariance matrices, we apply the matrix inversion
identity [4]

R−1
zk+1zk+1

=
[
R−1

zkzk
O

O O

]
+
[
−WH

I

]
Q−1 [−W I]

where W = Rxk+1zkR
−1
zkzk

is a discrete Wiener filter-
ing matrix that estimates the new data from the old and
Q = Rxk+1xk+1 − Rxk+1zkR

−1
zkzk

RHxk+1zk
is its associated

error covariance matrix. From here, it is trivial to show
that the change in the log-likelihood ratio as a result of the
augmentation becomes [2]

∆l (zk+1, zk) = l (zk+1)− l (zk)
= eH0 Q

−1
0 e0 − eH1 Q

−1
1 e1 (1)

where W0 = Rxk+1zk0
R−1

zkzk0
and W1 = Rxk+1zk1

R−1
zkzk1

are Wiener filters conditioned upon H0 and H1, respectively,
and e0 = xk+1 − W0zk and e1 = xk+1 − W1zk are the
error vectors produced by these smoothing matrices with co-
variance matrices

Q0 = EH0

[
e0eH0

]
= Rxk+1xk+10

−Rxk+1zk0
R−1

zkzk0
RHxk+1zk0

and

Q1 = EH1

[
e1eH1

]
= Rxk+1xk+11

−Rxk+1zk1
R−1

zkzk1
RHxk+1zk1

,

respectively. Figures 1(a) and 1(b) graphically depict this up-
dating process wherein one forms a residual under each hy-
pothesis by linearly estimating the additional channel from
the previous channels, whitens with the appropriate error co-
variance, and finally updates the likelihood ratio by comput-
ing the energy in each whitened residual and forming their
difference.

The J-divergence [1] provides a tractable measure of the
amount of discriminatory information among the two hy-
potheses by simply measuring the difference in means of
the log-likelihood ratio under both hypotheses, i.e. J(z) =
EH1 l(z) − EH0 l(z). Using the results given above, it is

(a) LLR Updating Structure.

(b) LLR Update Block.

Fig. 1. Log-Likelihood Ratio Updating.

easy to show that the change in divergence when adding the
observation xk+1 becomes

∆J (zk+1, zk) = J (zk+1)− J (zk)
= tr

(
−2I +Q−1

0 Q10 +Q−1
1 Q01

)
(2)

where

Q10 = EH1

[
e0eH0

]
= Rxk+1xk+11

−W0R
H
xk+1zk1

−Rxk+1zk1
WH

0

+W0Rzkzk1
WH

0

Q01 = EH0

[
e1eH1

]
= Rxk+1xk+10

−W1R
H
xk+1zk0

−Rxk+1zk0
WH

1

+W1Rzkzk0
WH

1

are cross terms representing the error covariance when using
the wrong smoothing filter. That is, Q10 is the error covari-
ance matrix incurred when filtering with W0 given that it is
actually the H1 model that produced the data and vice versa
for Q01. Since we are filtering with a sub-optimal smoother
in such situations, we have the following inequalities

xHQ10x ≥ xHQ1x

xHQ01x ≥ xHQ0x (3)

for any non-zero x ∈ Cn.

3. REDUCED-RANK LIKELIHOOD UPDATING

In situations where n is large, it is advantageous to employ
reduced-rank methods to approximate the update. To achieve
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this, we use the same constructive procedure presented in [1]
to define a change in coordinate system built from the eigen-
structure of a normalized covariance matrix and use diver-
gence as a performance criterion for rank reduction. We be-
gin by removing the contribution from the H0 hypothesis via
a whitening procedure

w0 = Q
−1/2
0 e0 : EH0w0wH

0 = I

w1 = Q
−1/2
0 e1 : EH1w1wH

1 = Γ

where Γ = Q
−1/2
0 Q1Q

−H/2
0 and matrix Q1/2

0 satisfies the
equality Q0 = Q

1/2
0 Q

H/2
0 . The change in log-likelihood can

then be written as

∆l (zk+1, zk) = wH
0 w0 −wH

1 Γ−1w1

We then take the eigenvalue decomposition of matrix Γ
such that Γ = UΣUH for some orthonormal matrix U =
[u1 · · · un] and diagonal matrix Σ = diag (σ1, . . . , σn). The
whitened versions of both error vectors are then represented
in this new basis

y0 = UHw0 : EH0y0yH0 = I

y1 = UHw1 : EH1y1yH1 = Σ

resulting in the change in log-likelihood ratio

∆l (zk+1, zk) = yH0 y0 − yH1 Σ−1y1. (4)

To find the corresponding expressions for the change in
J-divergence, we define the following two matrices

Γ10 = EH1

[
Q
− 1

2
0 e0eH0 Q

−H
2

0

]
= Q

− 1
2

0 Q10Q
−H

2
0

Γ01 = EH0

[
Q
− 1

2
0 e1eH1 Q

−H
2

0

]
= Q

− 1
2

0 Q01Q
−H

2
0

Using the expression given in (2), the change in J-divergence
can be written as

∆J (zk+1, zk) =
n∑
i=1

−2 + uHi
(
Γ10 + σ−1

i Γ01

)
ui (5)

Therefore, to find the best low-rank approximation of Γ that
maximizes the change in divergence, we find that it is not the
value of σi that determines a dominant mode but rather the
quadratic form uHi

(
Γ10 + σ−1

i Γ01

)
ui. Using this decompo-

sition of the divergence and the two inequalities given in (3),
we can lower bound the change in divergence in terms of a
sum only involving the eigenvalues of Γ

∆J (zk+1, zk) ≥
n∑
i=1

−2 + σi + σ−1
i ,

and as the function−2+σi+σ−1
i is non-negative definite for

any σi ≥ 0, it then follows as a corollary that

∆J (zk+1, zk) ≥ 0. Thus, adding data to this quadratic de-
tector can never have a negative impact on divergence.

To perform the rank-p update, we decompose the coordi-
nate system as follows

U =
[
Up Up+1

]
where Up = [u1 · · · up] and Up+1 = [up+1 · · · un]. Also,

Σ =
[

Σp O
O Σp+1

]
where Σp = diag [σ1 · · · σp] and Σp+1 = diag [σp+1 · · · σn].
Without loss in generality, we assume that the coordinates are
sorted in a descending fashion such that

uH1
(
Γ10 + σ−1

1 Γ01

)
u1 > · · · > uHn

(
Γ10 + σ−1

n Γ01

)
un.

The filter UHp Q
−1/2
0 : Cn → Cp yields the low-rank approx-

imations of the error vectors as

ỹ0 = UHp Q
−1/2
0 e0 and ỹ1 = UHp Q

−1/2
0 e1

Using (1), the change in log-likelihood in this reduced-rank
subspace becomes

∆lp (zk+1, zk) = ỹH0 ỹ0 − ỹH1 Σ−1
p ỹ1 (6)

with an associated change in J-divergence

∆Jp((zk+1, zk) =
p∑
i=1

−2 + uHi
(
Γ10 + σ−1

i Γ01

)
ui (7)

4. SIMULATION RESULTS

To demonstrate a situation where log-likelihood updating
may be useful, we consider the problem of detecting the pres-
ence of a 10kHz source using multiple uniform linear arrays
(ULAs). We assume that each platform individually pings
the environment and collects far-field measurements via a
16-element ULA at a half-wavelength spacing of 7.5cm. For
this multi-static sonar simulation, we consider a situation
where 20 ULAs are oriented in the same direction and are
all above the seafloor at an elevation of 5m. The platforms
are uniformly spaced across a 40m distance in the cross-track
direction and each platform is located 1m behind the platform
to the left. We assume that the source is located at the origin
and all platforms are moving in the same along-track direc-
tion with a speed of 1.5m/s. A three-dimensional perspective
of the problem setup is given in Figure 2.

Assuming that each platform synchronously pings the en-
vironment with the same transmit signal via a global clock
and each array knows the location of the others, then it may
be possible in such a situation to account and equalize the
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Fig. 2. Multi-Static Sonar Setup.

effects of direct path propagation. We assume that such a sit-
uation exists and, for the kth observation from the lth array,
consider the detection problem

H1 : yl[k] = h (θl) αT
l s[k] + nl[k]

H0 : yl[k] = nl[k]

where nl[k] ∈ CL is a zero-mean complex Gaussian ran-
dom vector with covariance structure E

[
nl[k]ni[k]H

]
=

δl−iσ
2
nI and h (θl) =

[
1 ejπ cos(θl) · · · ej(L−1)π cos(θl)

]H ∈
CL is the steering vector of the ULA at direction of ar-
rival (DOA) θl and at half-wavelength spacing (d = λ/2).
Assuming that there are N platforms in the sensing en-
vironment, the vector αl ∈ RN is given to be αl =[
(||rl||+ ||r1||)−1 · · · (||rl||+ ||rN ||)−1

]T
where each el-

ement is an attenuation (or fading) weighting assumed to
be the inverse of the transmitter-receiver path-length and ri,
i = 1, . . . , N , is a vector describing the platform’s location
with respect to the source. Finally, the vector s[k] ∈ RN is
a zero-mean Gaussian random vector containing the source-
signals from each platform at the kth observation and has
covariance matrix Rs = E

[
s[k]s[k]T

]
given by

Rs = σ2
s


1 ρ(φ1 − φ2) · · · ρ(φ1 − φN )

ρ(φ2 − φ1) 1 · · · ρ(φ2 − φN )
...

...
. . .

...
ρ(φN − φ1) ρ(φN − φ2) · · · 1


where φl is the aspect angle among the source and the lth

platform and ρ(·) is a correlation coefficient assumed to be

a Gaussian function of the form ρ(φl − φi) = e−
(φl−φi)

2

Ω

where Ω is a parameter loosely describing the target structure.
The geometry of the problem being considered under H1 is
shown in Figure 3 for one array. For the sake of simplicity,
we assume all the parameters of the model are known a priori.

4.1. Systematic Channel Updating

For simulation, we build a detector to handle data from
Platform 1 and subsequently perform updating to account
for the addition of the data from Platform 2 and so on until
the data from all 20 arrays have been taken into account. Fig-
ures 4(a) and (b) display ∆J and PD corresponding to a false

Fig. 3. Geometry of Multi-Platform Model.

alarm rate of 5% at an SNR value of 5 dB when Platform 1
is located at -20, -10, 0, and 10 m in the along-track direction.
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(a) ∆J vs. # of Platforms.
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Fig. 4. Detection Performance as a Function of the Number
of Platforms.

As can be observed, the performance of the detector al-
ways improves the closer the platforms approach the target
and always increases with a larger number of platforms. The
change in J-divergence also always increases the closer we
approach the target but does not always increase with the
number of platforms. The point at which the change in J-
divergence reaches its maximum value (denoted by a black
dot in Figures 4(a) and (b)) signifies the point of diminishing
return as it is after this point that the J-divergence increases
but at a decreasing rate. Looking at Figure 4(b), one can
observe that the addition of new platforms beyond this point
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brings little improvement in detection performance. There-
fore, when adding platforms, we can see that the change in
J-divergence provides an effective measure for recognizing
when adding an additional platform would not bring tangible
improvement in detection performance.

4.2. Selective Channel Updating

For the next simulation, we assume that the system can only
use a subset of the total number of platforms available but we
are given the opportunity to choose which platforms to use
when performing detection. Rather than searching through all
possible combinations of channels and choosing the one that
yields maximal detection performance, we instead recursively
search through all the platforms and sequentially add the ob-
servation that yields the largest increase in J-divergence. As
before, the system is initialized by building a detector to han-
dle data from Platform 1. We then search through all the
other 19 platforms, measuring the increase in J-divergence
that would be seen if we were to add the observation from
that platform. We then choose the one that gives the largest
increase in divergence. Then, the likelihood ratio is updated
accordingly by augmenting that observation to the observa-
tion of Platform 1. We then search through all the remain-
ing 18 platforms and measure the increase in divergence that
would be seen if we were to add the observation from that
platform given the new augmented measurement. Again, we
choose the one that gives the largest increase in J-divergence,
incrementally update the likelihood ratio, and stack the obser-
vation from that platform with the augmented measurement
from the previous iteration and so on. This selective platform-
allocation scheme is compared to a scheme where platforms
are chosen at random, i.e. integers ranging from 2 to 20 are
selected at random without replacement.
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Fig. 5. PD and ∆J versus Number of Platforms.

Figure 5 displays the results of this simulation in terms of
PD and ∆J versus the number of platforms whenPlatform 1
is located at 10 m in the along-track direction. We can see
that, when selectively adding platforms, the change in J-

divergence starts out large and subsequently decreases at a
faster rate compared to that when we choose at random which
begins at a lower change in J-divergence and remains fairly
constant throughout. We can observe in Figure 5 that the
performance of the detector associated with selective alloca-
tion always exceeds that of random platform selection. We
can also see that the difference in PD among selective and
random platform allocation diminishes as the number of plat-
forms grows large. Thus, if we can only take advantage of
a small number of platforms, the selective allocation scheme
can give a significant increase in detection performance com-
pared to a situation where platforms are arbitrarily chosen,
i.e. at random. Stated slightly differently, for a given PD
we can also see that selectively choosing platforms gener-
ally requires a smaller number of platforms than when we
choose at random. Therefore, we again see that the recursive
framework of log-likelihood updating and the corresponding
change in J-divergence can be effective tools for deciding
which platforms we wish to use when performing detection
in such a framework.

5. CONCLUSIONS

In this work, we considered the problem of likelihood up-
dating in Gauss-Gauss detection when new data channels
become available. We showed that this process inher-
ently involved linearly estimating the new channel data
based upon the old ones. The change in divergence is
also derived in terms of error covariance matrices that are
matched/mismatched to the given hypothesis and can be used
to build low-rank approximations of the update. Simulation
examples involving multi-static sonar were considered to il-
lustrate the practicality of the proposed updating methods for
not only deciding if and when one reaches a point of dimin-
ishing return in adding new sonar platform data but also for
deciding which platforms to add.
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