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ABSTRACT 

 

Based on the widely spread concept of instantaneous 

frequency (IF), we resumed the IF attractors (IFAs) method 

used for tonal components extraction from any given signal 

and we emphasized its essential advantages over traditional 

approaches by incorporating it into a popular application: 

the calculus of auditory masking threshold (AMT). Using 

MPEG1 Layer 1 psychoacoustic model, we propose to 

replace the classic algorithm for tonal/noise maskers 

identification with the IFAs method. The new approach 

proved a superior behavior regarding the accuracy 

estimation of tonal component confirmed by comparative 

tests. Also, we report notable AMT magnitude differences, 

between reference method and new approach. 

 

Index Terms— Instantaneous frequency, instantaneous 

frequency attractors, auditory masking threshold  

 

1. INTRODUCTION 

 

The traditional approach for time-frequency analysis is the 

well known Fourier transform or its more convenient version 

the short time Fourier transform (STFT). Although this 

mathematical instrument provides very good results for 

stationary signals whose frequency content remains 

unchanged, it is not very well suited for nonstationary 

signals, due to the compelled compromise between time and 

frequency resolution which leads to poor frequency 

accuracy. Since nonstationary signals are quite present in 

mainstream applications (e.g. applications using chirp 

signals, audio signal, speech signal, etc.), a more appropriate 

time-frequency analysis was sought: the instantaneous 

frequency (IF) analysis.  

The concept of IF relates to any process involving 

time-varying spectral features found in nonstationary signals. 

The usage of IF is found in diverse technical fields: from 

seismic field [3], to radar, sonar, and biomedical 

applications [4]. In general, the IF of a nonstationary signal 

indicates the spectrum position of the signal’s spectral peak 

as it varies with time. Hence, the IF can be viewed as the 

frequency of a sine wave which best fits the signal being 

analyzed, at a given time instant. When dealing with signals 

with more than one spectral component, a preliminary 

subband decomposition is mandatory [4]. Regarding IF 

estimation, many approaches rely on Wigner-Ville 

distribution and its variations, while others concentrate on 

obtaining IF through the analytical signal [4-6]. The solution 

adopted in this paper is similar with the one presented in [8], 

and uses a complex band pass filter (BPF) bank in order to 

decompose the analyzed signal. 

The concept of IF attractors (IFAs) was first introduced 

in [1], and improved in a particular way in [2]. IFAs 

combine the accuracy of the IF analysis with the subband 

spectrum exploration to successfully avoid false frequency 

components (given by the smearing artifacts of the 

windowing) and determine the actual tonal components, 

even for low signal to noise ratios (SNR). The importance of 

pinpoint accuracy for tonal components is crucial for any 

application which relies on tonal components analysis (e. g. 

speech and audio models [5], the calculus of the auditory 

masking threshold (AMT) [10]). 

In this paper we stress the importance of IF analysis in 

identifying tonal components of a given signal and we 

provide as a meaningful example its application to the 

calculus of the AMT. We review a fairly new introduced 

method for tonal components estimation with great accuracy, 

based on IF attractors [1-2]. Also we perform a comparison 

between a classic method for computing the AMT based on 

STFT and the new method based on IFAs. The result of the 

comparison shows the superiority of the latter method. 

The paper is organized as follows. Section 2 highlights 

the important aspects of IF analysis and IFAs, section 3 

presents general considerations regarding AMT and 

describes the proposed solution of using IFAs for AMT 

calculus and section 4 provides conclusive results obtained 

for the new approach when compared with the reference. 

Finally section 5 is reserved for conclusions. 

 

2. TIME-FREQUENCY ANALYSIS USING IF 

ATTRACTORS 

 

The IF analysis in conjunction with IF attractors offers an 

elegant and accurate method for the estimation of tonal 

components of any given signal, especially when compared 

with the traditional STFT analysis whose accuracy is 
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bounded by the compelled compromise between time and 

frequency resolution and the uniformly spaced frequency 

bins of the Fourier spectrum. The first part of the current 

section presents briefly the main steps for estimating the IF 

spectrogram, while the second part resumes the IFAs theory 

and surveys the discrete version of the IFAs algorithm. 

 

2.1. IF analysis 

 

In the context of the well known sinusoidal model [7], Abe 

et al. [8] introduce the idea of estimating the tonal 

components of any given signal through the help of IFs.  

The main idea of the solution adopted in [8] is to 

decompose the analyzed signal, ( )s t  into single component 

signals or narrow frequency band signals, by using a 

complex BPF bank. For each signal obtained through 

complex filtering the IF is estimated. This frequency is 

equivalent to the frequency of the best cosine wave that 

approximates the real part of the band pass filtered signal. 

The filter bank is elegantly built by modulating a causal and 

real prototype low-pass filter (LPF), whose impulse response 

is denoted ( )w t . The impulse response function of the thp  

filter, characterized by the central frequency 0
p

Ω >  will be  

( ) ( ) pj t

p
h t w t e

Ω
= ∈� ,   (1) 

while the output of the thp  filter, when the input is fed with 

( )s t , will be denoted ( )fp
s t . Assuming that in the thp  

channel we have a tonal component, then ( )fp
s t  is 

completely characterized by its instantaneous amplitude 

( )p
A t  and argument ( )p

tθ , which represents the 

instantaneous phase. Furthermore, the sought IF information, 

can be extracted using (2) 

( ) ( ){ }arg
p fp

d
t s t

dt
ω = .         (2) 

However, the direct usage of (2) is not recommended, 

therefore the advantage of filter bank approach combined 

with STFT was preferred. Namely, the original signal can be 

analyzed as the Fourier transform, ( ),
a

S tω  of the particular 

signal ( ) ( )a
s t w t t− . Considering time as variable and a 

fixed frequency 
n

Ω , ( ),
a

S tω  can be translated into (3) 

( ) ( )( ), ,
n

S t u w tΩ = ∗  with ( ) ( ) nj t
u t s t e

− Ω= .   (3) 

Now, using the filter bank approach, ( )fp
s t  can be viewed 

as the product between ( ),
n

S tΩ  and nj t
e

Ω
. The major 

advantage of this solution resides from the fact that, when 

computing the IF based on (2), the derivative can be 

commuted to ( )w t , rather than ( )u t  (due to a convolution 

property). Thus, a priori knowing the analytical expression 

of the analysis window (which is identical to the LPF 

prototype), there is no need for numeric derivative. Finally, 

IF is computed using (4), as the derivative of the phase of 

the analytic signal [9]: 

( )
( ) ( ) ( ) ( )

( ) ( ), 2 2

n n
n n

n n

a a a a

inst n a

a a

R t I t I t R t
t

R t I t
ω

• •

Ω ΩΩ Ω

Ω Ω

−
=

+
,   (4) 

where 
n

RΩ  and 
n

IΩ  represent the real and imaginary part of 

( )fp
s t . The notation ( )

•

 stands for the derivative. 

 

2.2. IF attractors 

 

The problem addressed by this section is the identification of 

tonal components in any given signal. It is well known that 

simple peak picking (PP) method delivers poor results due 

to the imprecision of distinguishing between real and false 

tonal components. The IFAs method overcomes this 

problem and provides conclusive results, even for low SNR. 

Its results are boosted by the usage of IF spectrogram.  

The main idea of the IFAs method is to explore the IF 

spectrogram with the help of a BPF bank, obtained through 

STFT. The task of each channel of the filter bank is to 

capture (or “to attract”) a tonal component. The exploration 

of the spectrum should be done in very small steps (large 

number of channels), so that each channel will attract no 

more than one component. If no tonal component exists, 

then the output of the channel will be its central frequency, 

otherwise it will be the IF of the corresponding tonal 

component.  

According to [1-2], the IFAs corresponding to the tonal 

components are the frequencies satisfying the following 

conditions: 

( ), 0
IF a

tµ Ω = ,  (6) 

( ),
[ 1 , 1 ]

IF

a
tµ

ε ε
Ω=Ω

∂ Ω
∈ − − − +

∂Ω
 (7) 

where 

( ) ( ),
,

a inst a
t tµ ω ΩΩ = − Ω .  (8) 

In the above equations Ω  stands for the central frequency of 

a channel, 
a

t  is the current analysis moment, and 
,inst

ω Ω  

represents the sought IF. The positive constant ε  

strengthens the robustness to noise and adds flexibility to the 

method. Depending on the SNR or the type of application 

involved, the value of ε  can be adjusted between 0 and 1. 

The discrete version of the IFAs method follows the same 

idea as its analog version and includes four main stages:  

a) perform IF analysis; b) plot the IF against the central 

frequencies of the BPF bank; c) search the previous plot for 

plateau regions; d) for each plateau region compute the 

frequency, amplitude and phase of the IFA. In stage c), 

another parameter which increases the algorithm’s 

robustness to noise was introduced. This parameter indicates 

the minimum number of channels which should attract the 
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same tonal component, denoted W . Details regarding each 

stage can be found in [2].  

 

3. APPLICATION OF IF ATTRACTORS 

 

In the context of the sinusoidal model [7], IFAs proved to be 

a superior alternative to the classical PP method (reduction 

of the arithmetic complexity, increase of the synthesized 

speech quality) [1-2]. In the current section we broaden the 

usage of IFAs, by introducing this concept into the AMT 

calculus. As it will be further shown, the impact of such an 

approach is at least notable.  

 

3.1. General considerations regarding AMT estimation 

 

Psychoacoustic considerations offer consistent support in 

various signal processing applications, such as loudness 

estimation, audio compression, noise suppression, speech 

recognition, speech and audio synthesis. One largely used 

perceptual feature is the AMT. For instance, in perceptual 

audio compression, the usage of such a feature enables the 

possibility to reduce the bitrates without affecting the high 

quality of the transmitted audio signal. 

The general computation framework of the AMT is 

based on several perceptual concepts: critical band, absolute 

threshold of hearing (ATH), (non)simultaneous masking and 

spread of masking [11]. There are different approaches 

regarding the computation of the AMT (e.g. [12]), but in the 

context of IFAs, only the approaches which require a stage 

for tonal/noise maskers identification are of interest (e.g. 

[10-11], [13-14]). For the next part of this paper we will 

consider the psychoacoustic model of MPEG1 Layer 1 [14] 

as a reference for AMT calculus. 

 

3.2. Incorporating IF attractors in AMT algorithm 

 

The main stages of MPEG1 Layer 1 AMT algorithm are 

[11], [14]: 1) spectral analysis and sound pressure level 

(SPL) normalization; 2) identification of tonal and noise 

maskers; 3) decimation and reorganization of maskers;  

4) computation of individual masking thresholds;  

5) computation of global masking threshold. 

Next we focus only on the second stage of this 

algorithm. Details regarding the rest of the stages can be 

found in [11]. The classic approach for stage 2 requires 

finding the tonal components, and then from the remaining 

components, a noise masker for each critical band is 

computed. The frequency of one noise masker is computed 

as the geometrical mean of the nontonal components in the 

corresponding critical band. In order to identify the tonal 

maskers, the classic algorithm first searches all the local 

maxima and then keeps only those peaks which fulfill a 

sharpness condition.  

We propose to replace the traditional PP method used in 

stage 2, with the IFAs method described in section 2. As a 

consequence the set of tonal maskers, delivered by the IFAs, 

will be more accurate with respect to their total number, 

frequency, amplitude, and phase. Due to the modification of 

the number and position of the tonal maskers, the position 

and amplitude of the noise maskers will also be changed. 

Another important side effect is the calculus of the spreading 

function, which now can be placed on the exact frequency of 

the tonal maskers. Moreover, these changes do not remain 

without echo on the global masking threshold. It will be 

further shown that the usage of IFAs produces a 

modification, on average, of approximately 2 dB on the 

magnitude of the AMT, depending on the SNR scenario or 

the frequency position of the tonal components. 

 

4. EXPERIMENTS AND RESULTS 

 

In order to quantify the changes introduced by the IFAs in 

the calculus of AMT, we considered two types of scenarios. 

One type of scenario uses test signals generated with known 

parameters (e.g. number of tonal components, SNR), while 

the second type of scenario uses fragments of high quality 

audio signal or high quality excerpts taken from a speech 

database. The sampling frequency, 
s

F  used for all the test 

signals was 24000≥ Hz.  

Scenario 1. For this type of scenario we have generated 

signals obtained as the sum between a periodic signal (a 

finite sum of sinusoidal components with known 

frequencies, amplitudes and phases) and a nonperiodic 

signal (white noise, with known power). The test signals’ 

SNRs were imposed. We divided the tests for this scenario 

into tests with high SNR (higher than 30 dB), which will 

further be referred to as S1H and tests with low SNR (less 

than 30 dB), referred to as S1L. For both types of tests we 

have investigated the frequency estimation accuracy of the 

tonal components for the IFAs method and its effects over 

the spreading function and the global masking threshold. 

During all tests the frequencies of the tonal components 

were placed between two frequency bins, as these are the 

cases known to produce the most estimation errors. The 

most unfavorable situation leading to the highest frequency 

estimation error – FEE, (defined as the difference between 

original and estimated frequency) is when the frequency is 

placed at half distance between two consecutive bins. 

We considered an example with three tonal components 

placed at 
1

555Hzf = , 
2

1234 Hzf = , and 
3

5111Hzf = , 

with corresponding frequency bins 5.92, 13.16 and 54.51 

(for 24 kHz
s

F =  and a 12 ms analysis frame). Figure 1 

displays the power spectrum for this example (gray solid 

line). We performed a large number of tests for this type of 

signal, using different SNR levels. First, we focused our 

attention on the frequency estimation accuracy. We 

estimated the frequency of the tonal components with both 

IFAs and PP method, and we compared the results with 

original values, resulting FEE. The tests results were 
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analyzed through the mean and standard deviation of FEE 

(
3f

FEE  and 
3f

FEE
σ ). 

 
Figure 1 – Comparison between reference AMT (dotted line, 

○) and IF AMT (dark solid line, ●) – S1H tests example 

Table 1 presents a part of the results we obtained – the 

results for the most unfavorable case, frequency
3

f .  

Table 1 Comparative test results – IFAs vs. classic approach  

SNR 54 dB (S1H) 20 dB (S1L) 10 dB (S1L) 

IFAs 

0.2ε =
5W =  

PP 

IFAs 
0.35ε =

3W =  
PP 

IFAs 

0.45ε =  

3W =  

PP 

Frequency estimation accuracy 

3fFEE [Hz] 57.6 10−⋅ 45.25 0.014 29.94 31.7 10−− ⋅ 10.8 

3f
FEE

σ [Hz] 0.06 0 2.24 34.65 5.42 45.2 

AMT magnitude differences 

L∆ [dB] 1.98−  1.026−  1.32−  

L
σ ∆ [dB] 0.967 2.5 3.41 

The results in Table 1 show that even for low SNR 

levels, the IFAs estimation is very accurate. We obtain an 

average error close to zero, and a standard deviation around 

5 Hz, as opposed to the PP method where the error is higher 

with four magnitude orders. Regarding the number of false 

components, for high SNR levels, with IFAs method we 

always detect the exact number of tonal components. 

However the PP method, for most of the analyzed frames 

introduces false tonal components. This aspect is also visible 

in Figure 1. Our tests reveal that in 72.5% from the total 

number of analyzed frames the PP method leads to false 

tonal components. For low SNR levels, the IFAs method 

starts to introduce such components, but their number is less 

than the number introduced by the PP method and can be 

kept under control with the two parameters ε  and W . 

Considering the findings above, we regard the IFAs method 

as an excellent choice for tonal components detection 

algorithms. 

Next we investigate the impact of IFAs introduced in 

the calculus of AMT. One important effect, represented in 

Figure 2, is the influence over the spreading function (SF). 

The shape of SF for a tonal masker, when using the IFAs, 

follows closely the power spectrum of the analyzed frame, 

whereas for the PP method the peak of the SF appears 

displaced from its actual position. This effect appears 

regardless of the SNR level and is more prominent when the 

tone frequency is placed between bins (see Figure 2).  

 
Figure 2 – Spreading function for a tonal component 

detected with IFAs method (dark solid line, ●)  

and with PP method (dotted line, ○) 

The difference observed for the SFs, obtained when 

using the IFAs method and the classic method, is further 

visible in the AMT magnitude, especially in the frequency 

bands around the tonal maskers. For S1H tests, the 

magnitude difference, denoted L∆ , is kept constant from the 

position of the tonal masker until the end of the spectrum, if 

no other masker interferes. This is the case for 
3

f  frequency 

in Figure 1 (dotted line – reference AMT, solid dark line 

AMT obtained using IFAs – IFA AMT). If another 

tonal/noise masker follows (as it is the case for 
1

f  and 
2

f ), 

then L∆  is preserved only for a certain frequency band. 

Outside that frequency band, L∆  has different degrees of 

variation, depending on the existence of false tonal 

components or the particular frequency content of the signal. 

The effects mentioned above were observed during the 

tests we performed. The signals used in tests had a frequency 

content similar to the example in Figure 1. Second part of 

Table 1 provides the mean and standard deviation of L∆  

( L∆  and 
L

σ ∆ ) for different SNR levels. For S1H test, L∆  is 

around 2 dB. The small value for 
L

σ ∆  signifies that the set 

of L∆  has tight grouped values, which confirms the fact that 

in the absence of another tonal masker, L∆  is kept constant 

throughout the spectrum. Also, these results indicate that, 

although the PP method introduces false tonal components, 

this aspect does not impact on the global masking threshold. 

These false components always lie below the AMT.  

For S1L tests, L∆  is around 1 dB, but 
L

Lσ ∆ > ∆ , 

which implies that the L∆  data contains values spread over 

a wide range. As expected, the existence of false tonal 

components now greatly influences the AMT, causing a 
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large variation of L∆  (see Figure 3). Again, the results are 

in agreement with the predicted behavior of L∆  variation. 

 
Figure 3. Comparison between reference AMT (dotted line, 

○) and IFA AMT (solid dark line, ●) –S1L tests example 

 
Figure 4. Comparison between reference AMT (dotted line, 

○) and IFA AMT (solid dark line, ●) –Scenario 2 example 

Scenario 2. In Figure 4 is represented the power 

spectrum of a high quality audio fragment ( 44.1kHz
s

F = ). 

The comparison between reference AMT (dotted line) and 

IFA AMT (solid line) depicts a notable difference, of 

maximum 12 dB, which underlines the results obtained for 

the previous scenario. This difference can be crucial, for 

instance in perceptual compression applications, where the 

bitrate is obtained based on perceptual considerations.  

 

5. CONCLUSIONS 

 

This paper resumes the IFAs method used for tonal 

components extraction from any given signal and 

emphasizes its essential advantages over traditional 

approaches. We incorporated IFAs into a popular 

application: the calculus of AMT. Using MPEG1 Layer 1 

psychoacoustic model, we proposed to replace the classic 

algorithm for tonal/noise maskers identification with the 

IFAs method. 

We conducted extensive comparative tests which 

revealed multiple results: the extraordinary accuracy of IFAs 

method, even for very low SNRs, the reduced number of 

false components introduced by the IFA method, the 

influence of the new approach over the spreading function. 

Finally, when comparing IF AMT with the reference AMT 

we reported an average difference of 2dB in magnitude, with 

0.967
L

σ ∆ = , for signals with high SNRs. When SNR level 

decreases, the variation of L∆  increases, depending on the 

frequency content and the number of false tonal components.  
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