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ABSTRACT

This paper refers to a voice-enabled smart-home scenario, for whi-
ch contaminated speech is produced to train a distant-speech reco-
gnition system. The impulse response measurement process is in-
vestigated, with a specific focus on its impact on speech recogni-
tion performance. Experimental results, related to a phone-loop and
to a word-loop task, show that a significant change of performan-
ce is obtained when using different techniques for impulse response
estimation. In particular, the best performance is obtained when an
exponential sine sweep excitation sequence is used, with a proper
choice of its length and of the energy with which it is propagated in
the environment.

Index Terms— Smart home, Distant-speech recognition, Room
impulse response, Speech contamination, Auralization.

1. INTRODUCTION

Speech interaction with distant microphones is an important step to-
wards the development of easy-to-use voice interfaces in the auto-
mated home context. Nowadays, the most common home control-
ling interfaces are still based on touch screens, keyboards, PDAs,
tablet PCs, or other similar devices. Major trends are towards a dif-
fused use of handheld devices in home automation. Nevertheless,
the evolution of the human-machine interfaces, in parallel with other
technologies for the future digital home, is in the direction of achie-
ving a more natural interaction. Speech recognition, thanks to the
high degree of maturity achieved over the last years, is being pro-
gressively introduced in this application field [1], generally based on
the use of a headset, of a telephone like input device, or of so-called
open-air microphones although at this moment applied quite rarely
and with unsatisfactory performance. One of the biggest challenges
for a massive introduction of ASR technologies in home automation
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systems is the increase of robustness against spontaneous speech and
uncontrolled acoustic conditions. In this regard, the ASR input va-
riability related to microphone location is one of the critical issues
which often determines a significant loss of performance. Althou-
gh most of the users could simply try to speak close to the micro-
phone, and in a rather controlled way, the expectation is that in the
future users would require to be able to interact at four-five meters
from microphones in a crowded room, with music playing, and other
possible active sound sources.

The EC DIRHA project (http://dirha.fbk.eu) has the purpose of
developing basic technologies that enable distant speech interaction
in a home environment based on a distributed microphone network.
Multiple microphone devices will be installed in different rooms in
order to monitor selectively acoustic and speech activities observable
inside any space of the household.

To tackle ASR robustness to environmental noise and reverbera-
tion, one of the most effective approaches is based on training the
speech recognizer with contaminated speech that is characterized
by the acoustic properties of the given enclosure. The main target
of this work is to investigate on the possible influence on recogni-
tion performance of different parameter settings and choices in the
acoustic impulse response estimation with indirect methods. In the
remainder of the paper, we will show that type, length and energy
of the excitation signal diffused in the environment play a crucial
role to derive impulse responses of high quality, which allow one
to increase significantly the robustness of the recognition system.
Past works had not analyzed the variability in recognition perfor-
mance due to different methods for impulse response measurement,
although differences have been evidenced at perceptual level.

The paper is organized as follows: Section 2 introduces the me-
thods for impulse response estimation here explored for speech con-
tamination purposes. Section 3 describes the experimental setup and
the data sets used for training and testing of the speech recognizer.
Section 4 provides details about the speech recognition system and
the related investigated tasks, while Section 5 reports on experimen-
tal results obtained with different techniques and settings. Final-
ly, Section 6 gives some concluding remarks and outlines possible
future activities.
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2. IMPULSE RESPONSE ESTIMATION

The Impulse Response (IR) is one of the most representative features
characterizing an acoustic space. In the case of indoor reverberant
room, if one assumes to deal with a linear time-invariant acoustical
transmission system, IR provides a complete description of the chan-
ges a sound signal undergoes when it travels from one point in space
to another [2].

IR estimation is a topic which has been widely discussed in the
literature of the last two decades. The early proposed methods were
referred to as Direct, i.e. methods based on diffusing in the environ-
ment a signal of impulsive nature, as a gun shot or a bursting balloon.
These methods were then replaced by Indirect ones, characterized by
using excitation signals different from the Dirac function, primarily
due to the advantage of providing a higher Signal-to-Noise Ratio
(SNR) which was not guaranteed by the former one. In the case of
indirect methods, a known excitation signal is reproduced at a given
point (for instance through a loudspeaker), and the corresponding si-
gnal is observed by a microphone placed at the other point in space.
In general, the related observation is affected by environmental noise
and non-linearities that may be introduced in the measurement chain
by instrumentation.

In the category of indirect methods, some of the most common-
ly used state-of-the-art techniques are Maximum Length Sequence
(MLS), Linear Sine Sweep (LSS), Exponential Sine Sweep (ESS)
[3].

2.1. Maximum Length Sequence

Originally proposed by Schroeder [4], the MLS technique provi-
des an indirect measurement of IR based on a finite-length pseudo-
random sequence of pulses, which has spectral properties almost
equivalent to a pure white noise [5]. Based on this technique, the
impulse response is derived by cross-correlation between the MLS
sequence (i.e., input signal) and the microphone signal (i.e., out-
put signal). As mentioned above, if compared to direct methods
MLS offers a better SNR; however, it is sensitive to non-linearities
introduced by the measurement system, as shown in Figure 1(a).

2.2. Linear Sine Sweep

LSS is an indirect technique [3] characterized by an excitation input
signal consisting in a sine whose frequency sweeps linearly with ti-
me (also referred to as chirp). Denoting with w; and w» the initial
and final angular frequencies of the sweep and with L its length, it
can be defined as follows:

2
z (t) = sin (wzt—kw%) €))

As in the case of MLS, the impulse response derives from a cross-
correlation between input and output signals. Besides a better SNR
than in the MLS case, LSS introduces the advantage of a better
(although not perfect) processing of the non-linearities.

2.3. Exponential Sine Sweep

The ESS technique, introduced by Farina [3], is based on an expo-
nential time-growing frequency sweep, as described by the following
relationship:

z(t) = sin

L (e%'l"(%) - 1) @)
In (i—f)

An advantage oftered by ESS is the immunity against harmonic di-
stortions. As shown by Figure 1(c), a perfect separation can be ob-
served between the contributions due to non-linearities (i.e., harmo-
nic distortion), appearing in the left part of the estimated IR, and
contributions related to the linear impulse response (i.e., reverbera-
tion), observable in its right part. On the other hand, in the case
of MLS this separation can not be found, which introduces noticea-
ble artifacts in the estimated IR. In the case of LSS, although con-
tributions due to harmonic distortion are mainly in the left part of
estimated IR, the linear part of the IR can be affected at low frequen-
cies. Another advantage offered by ESS is that its excitation signal
spectrum is pink (note that it’s white-like for both MLS and LSS),
which ensures to have a better SNR at lower frequencies. This is a
desirable feature both at perceptual level and for speech recognition
purposes, for which a mel-filter bank is used with higher resolution
in the lower part of the frequency axis. Due to this coloration in fre-
quency, pre-equalizing signals is necessary, before applying cross-
correlation between input and output signals, which consists in a
filter with 3dB/octave gain.

2.4. From Impulse Response to Contaminated Speech

In the literature, transforming a clean (i.e., dry or anechoic) signal
into a reverberated one is commonly referred to as auralization pro-
cess, often applied in the case of binaural rendering [6]. For speech
recognition purposes, this operation is often referred to as contami-
nation process [7], as shown in the following relationship:

Yrew(t) = Sciean (t) * h(t) + n(t) (3)

where one can note that the clean signal is convoluted with the gi-
ven impulse response h(t), and then further processed by adding a
noise signal n(¢) that may consist in environmental background noi-
se signals of variable amplitude, to account for different SNRs to
simulate.

3. EXPERIMENTAL SETUP AND CORPORA

The following of this paper reports on experimental results of
distant-speech recognition which were obtained using contaminated
data (for training purposes) and real data collected in an apartment
available in the context of DIRHA project (for evaluation purposes).
Different recording sessions were performed in the given environ-
ment, to collect both speech material and audio signals useful to
estimate impulse responses.
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Fig. 1.
ques, when the measurement process has been affected by a harmo-
nic distortion introduced by the amplifier-loudspeaker chain while
diffusing the excitation signal in the environment.

Impulse responses provided by the three given techni-

3.1. Experimental Setup

The above-mentioned apartment comprises different rooms which
were equipped with a network of microphone arrays for prelimina-
ry experiments under DIRHA project. The complete experimental
set-up is based on the use of 30 omnidirectional microphones Shure
MX391, a harmonic-nested array consisting of 13 electret micropho-
nes, 6 multi-channel audio card RME Octamic Il, and a Focusrite
Saffire Pro 40 clocked one another. All the input/output signals were
characterized by 48 kHz sampling frequency and 16 bit accuracy.

The remainder of this work will focus on the system behaviour
for a speaker and a microphone both located in the living-room. The
sound source is frontal to the microphone, located at a distance of
about 4 m. The estimated reverberation time 750 is about 600 ms.

For impulse response measurement purposes, different catego-
ries of loudspeakers were considered. In particular, the following
results are based on the use of a professional studio monitor, i.e., Ge-
nelec 8030, and of an inexpensive consumer speaker for computer,
both active but characterized by a quite different frequency response
and nonlinearities introduced when transducing sound.

In order to estimate impulse responses, MLS, LSS, and ESS ex-
citation sequences were diffused by each loudspeaker in the environ-
ment, with varying length and amplifying settings. Each excitation
signal was preceded and followed by fade-in and fade-out sequences
of 50 ms duration, in order to avoid the introduction of any possible
numerical clicks. Speech data collection was then conducted with all
the real speakers located in the same position where the loudspeaker
was previously placed. For comparison purposes, the speech uttered

Type Use Spks | Sent. | Words | Hours
Cont. APASCI | Train | 176 39k | 33k ~6
Phon. Rich Test 11 1.7k | 12k ~2
Commands Test 11 13k | 7k ~1.5

Table 1. Characteristics of speech material used for training, and for
testing of the system on phone and word loop tasks, respectively.

by each speaker was also recorded with a professional close-talking
Countryman E6 microphone.

3.2. Data Set Description

The speech material used to train the distant-speech recognizer con-
sists in contaminated versions (one for each IR measurements set-
tings) of APASCI [8], an italian corpus of phonetically rich senten-
ces, whose main characteristics are summarized in the Table 1.

In order to evaluate speech recognition performance, the utte-
rances pronounced by real speakers (which were not in the APASCI
corpus) in the above-mentioned apartment were organized in two ta-
sks. The first one is a phone task related to a set of phonetically
rich sentences, while the second one regards a list of sentences ty-
pical of a possible command-and-control home application. In the
former case, different lists of sentences (about 150 per speaker) we-
re used, while in the latter case the same list of 125 commands was
shared by all the speakers. Main features of these two tasks are also
summarized in Table 1 and reprised in the following section.

4. SPEECH RECOGNITION SYSTEM AND TASKS

The speech recognition system investigated in this work is based on
a standard front-end processing consisting of a pre-emphasis step
followed by feature extraction. The pre-emphasized signal is bloc-
ked and Hamming windowed into frames of 20 ms duration (wi-
th 50% overlapping). For each frame, 12 Mel-frequency Cepstral
Coefficients (MFCCs) and the log-energy are extracted. MFCCs
are normalized by subtracting the means, while the log-energy is
normalized with respect to the maximum value on the whole utte-
rance. The resulting normalized MFCCs and log-energy, together
with their first and second order derivatives, are then arranged into
a single observation vector of 39 components. Acoustic modeling
operates at context-independent phone-like unit level, and is derived
by applying the Baum-Welch algorithm, while the recognition step is
accomplished by using Viterbi algorithm.

4.1. Phone Loop task

In this task, a reduced set of 26 phone-like units of the Italian lan-
guage was chosen, which consists of 5 vowels, 5 fricatives, 4 affri-
cates. 6 occlusives, 3 nasals, and 3 liquids. An acoustic model of
silence/background noise is also used. Each phone-like unit is mo-
deled with a three-state left-to-right continuous density HMM, with
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diagonal covariance matrix and with output probability distributions
represented by means of mixtures of 55 Gaussian components.

4.2. Word Loop

In the Word Loop (WL) task, we adopted the same acoustic mode-
ling realized for the PL task. The vocabulary consists of 233 words
used to create any of the above-mentioned command-and-control
sentences. Although the introduction of a grammar or language mo-
deling would increase the system performance, in this work a word
loop task was prefered to better emphasize any experimental eviden-
ce at acoustic level, which would otherwise be partially missed. It
is worth noting that the vocabulary includes a quite large number of
short and confusable words.

5. EXPERIMENTAL RESULTS

5.1. Baseline Results

In our past studies [7], contaminated speech-acoustic models were
derived by using impulse responses obtained diffusing in the envi-
ronments LSS signals of less than 5 s length. Moreover, dynamics
was limited in order to avoid any possible artifacts due to harmonic
distortion. On the other hand, in this work length (L) and dynamics
(VOL) of the excitation sequence are objects of study. Table 2 sho-
ws the close-talking baseline results which represent a set of lower
bound error rates to use as reference for the following experimen-
ts. Acoustic models were trained on the non-contaminated (clean)
APASCI speech material, while test is performed on the close-talk
microphone of the 11 speakers.

Training Test PER (%) | WER (%)
Clean APASCI | Close-talk | 29.8 19.5

Table 2. Close-talking speech recognition performance expressed in
terms of Phone Error Rate (PER) and Word Error Rate (WER), for
the PL and the WL tasks, respectively.

5.2. Influence of the Excitation Length

A first set of experiments was conducted to investigate on the im-
pact that excitation length has on recognition performance. In this
case, the impulse responses were derived based on diffusing in the
environment of MLS, LSS, ESS excitation signals with a low ampli-
fying level. This experiment, in which SNR highly depends on the
length of the emitted signal, mainly concerns the analysis of system
sensitivity to noise introduced by the different proposed techniques
rather than on harmonic distortion. For each IR measurement set-
tings, a contaminated version of APASCI were generated to train the
acoustic model of the ASR system.

In Figure 2, one can note that an increase of L corresponds to
an improved performance for all the investigated techniques, thanks
to the improved SNR in the IR measurement process. Results also
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Fig. 2. Performance in terms of WER (%) obtained on the WL
task when varying the length L of the excitation signal, given the
minimum output level VOL = V; with professional loudspeaker
Genelec 8030.

show that ESS provides the best performance at any excitation signal
length. This fact can be due to a better SNR at lower frequencies
(pink spectrum), e.g. below 2-3 kHz, typically more critical in spee-
ch recognition. MLS and LSS, characterized by a white-like spec-
trum, don’t have this interesting property. The experimental results
also show that MLS has a higher sensitivity to noise than the other
two techniques, however in general the difference in performance
tends to decrease when L increases. Although not reported here, it
is worth noting that the PL task provides a quite similar experimental
trend.

5.3. Influence of the Output Level

A second set of experiments regarded the analysis of recognition
performance when impulse response measurements are realized wi-
th different dynamics at loudspeaker output level. When the monitor
emits the excitation signal with a larger amplifier output level, toge-
ther with an increase of SNR in the IR measurement process, one can
introduce harmonic distortions. Results reported in Figure 3 refer to
the case of L=5 s, which corresponds to a situation of SNR highly
depending on the sound energy diffused in the environment.

Experimental results show that ESS outperforms the other two
techniques. As previously, for lower dynamics (V1,V2), this is due to
a better management of SNR. On the other hand, at higher levels of
dynamics (V4,V5) the best performance provided by ESS is mainly
due to a better management of harmonic distortions.

While for MLS and LSS, one should choose a trade-off setting
in order to have a satisfactory SNR in IR measurement without in-
troducing artifacts due to non-linearities, it is clear that ESS overco-
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Fig. 3. Performance in terms of WER (%) obtained on the WL task
when varying the loudspeaker output level with professional monitor
Genelec 8030.

mes this trade-off ensuring to have better performance also when the
output level of the active monitor increases.

5.4. Other Results

The absolute best performance were obtained using ESS technique
with the maximum investigated length and the maximum output le-
vel of the excitation signal, simultaneously. Table 3 shows the results
obtained with L=40 s and VOL= V5 (high vol), for both PL. and WL
tasks. Under GEN and PC columns, word error rates are reported for
the use of the professional studio monitor (Genelec 8030) and of the
inexpensive PC monitor, respectively. For both tasks, experimen-
ts confirm the advantage of adopting ESS method since, especially
with this settings, we have both an high SNR and immunity to har-
monic distortions. In particular, it is worth noting that word error
rates decrease from 54.5% to 45.5% when the MLS is replaced by
the ESS excitation sequence. Results also show that the use of a PC
monitor, combined with the ESS method, does not introduce signi-
ficant drawbacks, with just 0.5% word error rate difference between
the two cases.

MLS LSS ESS
GEN | PC |GEN |PC | GEN | PC
Phone Loop | 51.1 | 51.7 | 49.3 | 499 | 48.8 |48.9
Word Loop | 54.6 | 56.5 | 47.6 | 48.7|455 |46.0

Table 3. Recognition performance, expressed in terms of pho-
ne/word error rates, obtained with L=40 s and VOL=V5 (high vol),
using two different active monitors.

6. CONCLUSIONS

The results reported in this paper evidence the impact of impulse
response estimation in the development of a distant-speech recogni-
tion system, when a contamination method is used to simulate noisy
and reverberated speech signals for training purposes. In particular,
we showed that ESS technique outperforms other IR measurments
methods, especially when long and high dynamic excitation signals
are emitted in the acoustic environment. This work is mainly focu-
sed on the application of the proposed method with a speaker/sound
source located frontal to a microphone at four meter distance. Next
activities will regard further studies on different sound source po-
sitions and orientations in the given home environment, even when
there is no direct-path between the source and the microphone. Un-
der the DIRHA project these methods will be extended to the ca-
se of a microphone array including beamforming and enhancement
techniques. One of the main challenges of the project is to ensure
satisfactory performance in a speech interaction based application
for smart home, also when a quite limited number of microphones
can be installed in the environment. With this regard, the study re-
ported in this paper is of fundamental importance in order to direct
the future activities regarding both the design of the microphone net-
work distributed in the household and the development of a proper
acoustic modeling for robust recognition purposes. In this case, in
fact, the ultimate goal is to find the best trade-off between system
performance, cost and invasiveness of the solution.
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