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ABSTRACT

In this paper we review different Mixed Integer Programming
formulations of the STDMA Scheduling problem and intro-
duce a novel formulation. It is shown that the problem admits,
in general, multiple optimal solutions - we propose an effi-
cient cut generation procedure to construct all optimal sched-
ules and investigate the properties of optimal schedules in two
small networks.

Index Terms— mixed integer programming, scheduling,
all optima, physical interference

1. INTRODUCTION

Scheduling is a fundamental problem in wireless networks.
Due to the broadcasting nature of the wireless medium the
performance of the entire network is affected by the schedul-
ing algorithms that are used and it is not surprising that
researchers have devoted a lot of attention to this problem.
Nonetheless, fundamental questions are still open research
questions - in particular what are the characteristics of op-
timal schedules. Mixed Integer Programming models are
unsuitable to be used in real time, nonetheless these models
can give insight to the structural properties of the problem
and serve as benchmarks in assessing (non optimal) low
complexity algorithms.

In this paper we concentrate on the minimum frame length
scheduling problem and present a new formulation that leads
to more stable models. The models are used to develop an
algorithm to generate all optimal solutions to the problem that
can then be used in investigating the properties of optimal
schedules.

2. PROBLEM DESCRIPTION

The concept of the Spatial-TDMA scheduling problem has
been formalized in [1]. In the classical form of the problem
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the objective is to utilize as little number of time slots as pos-
sible, and thus minimizing delay and maximizing throughput.
Equivalent forms of the problem consist in finding the maxi-
mum number of transmissions in a given number of slots (in
particular with one slot), or maximizing a weighted sum of the
number of transmissions (taking into account different prior-
ity levels). In this paper we focus on the classical version: the
minimum frame length scheduling problem (MFLSP). Previ-
ous work in this problem can be broadly classified according
to the model for interference used.

The most common interference model in the MFLSP lit-
erature is the range or disk model [2,3]. An interference range
for each of the transmitters is defined and no receiver maybe
active if it is within the range of a active transmitter. A conflict
graph can be constructed where for each wireless link there is
a vertex and edges connect two pairs that cannot be active at
the same time; then graph theoretical techniques can be used
to solve the problem. The advantages of these models are
clear. First a long body of graph theoretical literature exists
allowing for the development of low complexity scheduling
protocols. Secondly, by abstracting the interference mecha-
nism these models can be deemed flexible in modeling a va-
riety of situations. It is not without disadvantages: setting the
range is not straightforward and interference is seen as a bi-
nary (and a local phenomenon) and can not take into account
accumulated (aggregated) interference. It has been shown
that the performance of protocols based in the graph model
may lead to infeasible schedules or underutilized transmis-
sion slots dropping in that sense the performance of the net-
work [4].

A more realistic interference model is the physical in-
terference model [5–7]. In this model interference is mod-
eled explicitly via the signal to interference plus noise ratio
(SINR). Given a power level pl and effective link gains gkl
between the transmitter of link k and the receiver of link l the
SINR is given by:

gll pl

W +∑k 6=l gkl pk
(1)

If the above expression, where W denotes the lump sum
noise level at the receivers, is above a threshold γ for all ac-
tive links then communication is feasible. This model has the
flexibility of allowing different power level strategies.
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2.1. Complexity Status

The broadcast scheduling problem under the various models
has been shown to be hard. In graph based interference mod-
els the MFLSP is simply a graph coloring problem - assigning
slots to each link corresponds to coloring the conflict graph in-
duced by the interference model. The graph coloring problem
is one of Karp’s original NP-Complete problems [8]. In the
SINR model the complexity status depends on how the gain
factors are modeled. For arbitrary gain factors the authors
in [7] have shown that the graph coloring problem can be re-
duced to the MFLSP for a fixed power allocation, nonethe-
less the reduction the authors propose can be adapted to allow
power control. Hence the MFLSP for arbitrary gain factors
is in NP-Complete. Where the gain factors need to respect
a triangular inequality (Geometric SINR model), the MFLSP
with a uniform power allocation has been shown to be in NP-
Complete [5]. The complexity status for the MFLSP with
a variable power allocation in the Geometric SINR model is
still an open question.

3. MIP FORMULATIONS

The minimum frame scheduling problem with joint power al-
location lends itself to a MIP formulations due to the binary
decision of which slot to schedule each link and the decision
on the power levels of each transmitting pair.

3.1. Standard Formulation

Let yt with t = 1, ...|L|, where L is the set of links to be sched-
uled, be a 0-1 variable indicating if slot t is activated or not.
Furthermore, let xtl be a binary variable indicating if link l is
activated in slot t, and ptl is the power level at which the link
transmits. The MFLSP can be formulated as:

Minimize,∑
t

yt (2)

Subject to, ptl ≤ Pmaxxtl ∀l ∈ L, t = 1, .., |L| (3)

ptl ≥ Wγ
gll

xtl ∀l ∈ L, t = 1, .., |L| (4)

gll ptl +(1− xtl)M
W +∑k 6=l gkl ptl

≥ γ ∀l ∈ L, t = 1, .., |L| (5)

∑
t

xtl ≥ 1 ∀l ∈ L (6)

xtl ≤ yt ∀l ∈ L, t = 1, .., |L| (7)

ptl ≥ 0,xtl ∈ 0,1,yt ∈ 0,1 ∀l ∈ L, t = 1, .., |L| (8)

Constraints (3) and (4) are binding constraints for the vari-
ables xtl and ptl , constraint 5, where M is a big enough con-
stant, ensures all active links in any time slot satisfy the signal
to noise ratio threshold, constraint (6) requires that all links
are active at least during one slot, i.e. that all transmission

requests are satisfied in the frame. Constraint (7) guarantees
that if a link is active in any given slot then the corresponding
slot is activated. Minimizing the sum of active slots ensures
that the optimal solution is the minimum frame length sched-
ule.

3.2. Primal Decomposition Formulation

The MFLSP can be seen as a minimum set cover problem.
Note that each schedule can be seen as a set of link activa-
tion vectors in each slot: a set of sub sets of (feasible) active
links, called transmission groups. Hence, the minimum frame
length schedule is simply the minimum of such sets where all
links transmit at least once:

Minimize,∑
g

λg (9)

Subject to,∑
g

aglλg ≥ 1 ∀l ∈ L (10)

λ ∈ 0,1 (11)

In the above formulation λg is a binary variable indicating
if transmission group is in the schedule or not, while agl is a
parameter taking the value 1 if link l is active in group g and 0
otherwise. This type of formulation requires all transmission
groups to be identified - note that the number of transmis-
sion groups grows exponentially with the number of links.
The authors in [7] proposed a column generation algorithm
to solve the MFLSP in this formulation that does not require
to generate all transmission groups. In each step of their col-
umn generation algorithm a transmission group is generated
by solving the original model for one slot only and with a
weighted sum of all active links for an objective function -
the weights being given by the dual values of the restricted
set cover formulation.

3.3. Numerical Instability Issues

The SINR constraint (5) creates difficulties for these models.
First, the constant M is hard to set at an appropriate value -
if set to a high value it leads to poor LP relaxations, if set to
a too low value it makes the problem infeasible. Second, the
gain factors are (usually) small numbers of the order of 10−10

- this leads to a numerical unstable model.
An alternative model for the SINR constraint is to check

necessary and sufficient feasibility conditions for a transmis-
sion group that are given by the power control literature [9].
Instead of modeling the SINR criterion directly, infeasible
transmission groups are excluded by generating 0-1 con-
straints; these constraints eliminate all the infeasible trans-
mission groups. All minimal infeasible transmission groups1

g need to be identified and the constraint ∑l∈g xl ≤ |g| is

1A minimal infeasible transmission group is a transmission group such
that if any of the links is removed the transmission group becomes feasible
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added for each. This model, leads to an exponential number
of constraints and a constraint generation procedure needs to
be used to solve the model. The infeasible groups of cardi-
nality two and three can easily be identified and the model
is solved; once an integer solution is obtained the feasibil-
ity of each identified group is checked using the criterion
above. Then, for each infeasible group the minimal sub-
set(s) of infeasible links in that group are identified and the
corresponding cuts are added - the algorithm stops when all
transmission groups in the constructed schedule are feasible.

A similar idea has been pursued in [10]. In that work,
the authors discretized the power variable and re-formulated
the problem with an exponential number of constraints. The
advantage of their model is that power levels are computed
explicitly, however extra integer variables are added further
complicating the model. In the procedure we propose no ex-
tra integer variable is needed and the model is simplified by
dropping the power variables. Note that computing the neces-
sary power levels from a given schedule is a straightforward
matter.

4. GENERATING ALL OPTIMAL SCHEDULES

Because it is possible to have an infinite number of optimal
solutions with distinct real part, we consider that two optimal
points are only different if and only if they have distinct in-
teger parts in MIP models. Let z be a binary vector and zs

represent a optimal solution s ∈ S, where S is the set of all
optimal solutions that have been identified. A sequential al-
gorithm to find all optima has been proposed ( [11] and refer-
ences therein). The sequential algorithm proceeds to solve the
model in each step excluding all the previous found solutions
zs. The algorithm stops when no more solutions can be found.
To exclude the point in the unity hypercube representing the
solution the following constraint is added,

∑
i:zs

i =0
zi + ∑

i:zs
i =1

(1− zi)≥ 1∀s (12)

The first summation term is greater or equal to 1 if for
some variable zs

i = 0 we have, in the current solution, zi = 1
and, similarly, the second summation term is greater or equal
to 1 if for some variable zs

i = 1 we have, in the current solu-
tion, zi = 0 - thus the constraint guarantees that at least one
of the variables takes a different value than in any of the pre-
viously identified solutions. The main strength of this algo-
rithm is the fact that it allows for a different objective function
and thus it allows for solutions with desirable properties to be
generated. Note however that the proposed cut only excludes
a single point in the unit hypercube - when certain permuta-
tions of values in the binary vector lead to ‘equivalent’ so-
lutions the cut is not sufficient to generate distinct solutions,
this is the case in the MFLSP.

4.1. Generating distinct minimum length schedules

In the MFLSP any feasible point represents a family of equiv-
alent schedules given by all possible permutations of the
transmission groups that the solution identifies. Therefore
the added constraint(s) should not only exclude the identified
optimal point but all permutations. Given that the optimal
frame length schedule is entirely composed by distinct trans-
mission groups, using the cut given by Ineq. (12) for each
permutation, we would add T ∗! constraints, where T ∗ is the
minimum frame length, for each identified optimum. To ex-
clude all possible permutations we have to ensure that at least
one of the transmission group g given by the optimal solution
s is not present in any of the slots. Let θs

g be a binary vector
with |L| components taking the value 1 if link l is active in
transmission group g in solution s and 0 otherwise. Let yg be
a binary variable taking the value 1 if group g is not in the
schedule and 0 otherwise and let Fs be the set of groups in
solution s ∈ S. The following constraints guarantee at least
one group is not reused:

∑
l:θs

lg=0
xtl + ∑

l:θs
lg=1

(1− xtl)≥ yg∀t,g,s (13)

∑
g∈Fs

yg ≥ 1∀s (14)

Constraint (13) guarantees that if group g is used in any
of the slots yg has to be 0 and constraint (14) ensures that at
least one of the groups is not being used. For each identified
optimum we add T ∗N + 1 new constraints and N new vari-
ables, where N is the number of newly identified transmission
groups.

Ideally the new generated solutions should be as distinct
as the one that was previously found. Traditionally this is
done by maximizing the hamming distance between the pre-
vious solutions and the newly generated solution. In the case
of the wireless scheduling problem this does not necessarily
maximize the difference between two schedules; intuitively
the difference between two schedules is given by the number
of distinct transmission groups in each. Therefore if we were
to maximize the number of previously identified transmission
groups not used in the new solution, we can guarantee that the
solution is as original as it can be. The number of transmis-
sion groups that are not in use in the new solution is simply
given by the sum of all variable yg: ∑g yg. A further benefit of
this approach is that it gives a simple way of identifying when
all groups that can be part of an optimal solution have been
generated - this can lead to a faster procedure to generate the
remaining optimal schedules.

4.2. A Sequential Algorithm based on Primal Decompo-
sition

A faster algorithm can be devised by noting that after hav-
ing identified all transmission groups that are part of optimal
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schedules, subsequent solutions are just alternative feasible
combinations of the identified groups. Different combinations
of the transmission groups can then be generated, excluding
the previously found ones. This achieves a dimension reduc-
tion of |L|T ∗ in the size of the problem. We can think of this
procedure as a two phases procedure: in the first phase we
are computing different schedules with different groups and
in the second phase we are computing all the feasible combi-
nations of transmission groups.

For the first phase we proceed as in the previous case, by
solving the same MIP with added constraints (13) and instead
of excluding a particular combination of groups as with con-
straint (14), we guarantee that at least one of the groups is not
in use, ensuring that a newly proposed solution has identified
a new group. We let G be the set of all identified groups and
require that at least one element is not active: ∑g∈G yg ≥ 1.

The first phase of the algorithm stops when no more fea-
sible solutions can be found, i.e. when the model becomes
infeasible. The infeasibility ensures that all the solutions with
distinct groups have been found and unfound solutions are
thus just alternative feasible combinations. To generate an al-
ternative combination we use a set cover like formulation as
in section 3.2 and add the constraint ∑g∈Fs λg ≥ 1∀s. The sec-
ond phase continues until ∑g λ∗g > T ∗, i.e. there are no more
schedules of length T ∗.

5. ILLUSTRATIVE EXAMPLES

Two small networks are investigated, where nodes have been
placed randomly in a 1km by 1km area and schedules are con-
structed where each link is active at least once. Connectivity
is created by triangulating all nodes, thus creating a fully con-
nected network. The effective link gains are modelled using
a distance based path loss model with a path loss exponent
of 3.5 (appropriate to model propagation conditions in urban
environments).

The first network has 7 nodes and 11 links (due to space
limitation we only show the topology of the bigger network).
Eleven minimum frame length schedules with 8 time slots
where each link transmits at least once are identified, of which
5 schedules have more than one transmission per link (hence
offering higher throughput). Looking at the minimum power
consumption that each schedule can offer, in the schedules
where each link transmits exactly once, the power transmit-
ted by the most expensive schedule was more than twice as
much of the least expensive one, while for the schedules with
12 scheduled transmissions the least expensive schedule has
27% less power consumption than the most expensive one.

The second network we investigate has 10 nodes and 21
links (see figure 1). Even though the increase in the size is not
that significant we can now identify more than 1000 solutions
with 12 time slots each. Note that only 91 distinct transmis-
sion groups were identified (see figure 2) and distinct sched-
ules are just different combinations of the identified groups.
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Fig. 1: Topology and location of nodes in the example net-
work with 10 nodes and 21 links.
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Fig. 2: The runtime to generate 1000 solutions. All transmis-
sion groups are generated in the first 5 minutes - from then
on all identified schedules are different combinations of the
identified groups.

In this network a wider variance between the quality of each
schedule for different criteria is observed - herein we analyze
three: robustness, throughput and power consumption.

We have found schedules with up to 35 transmissions
scheduled - 66% more network throughput than in the min-
imum required. As in the previous example, remarkable
differences exist between the total power consumption of the
network in each schedule. In figure 3 we show box plots
of the power consumption of each schedule categorized by
the number of transmissions in the schedule. As expected,
the median power consumption grows with the number of
transmissions performed. Nonetheless, big differences within
each throughput level are observed - with an overlapping
range across throughput levels. Across all throughput levels
the ratio between the most power consuming schedule and
the least power consuming is 2.5. To assess the robustness
of each schedule to fading, we computed the probability of
no outages occurring due to Rayleigh fading, i.e. the prob-
ability of not having a feasible power allocation given that
the effective link gains might suffer from Rayleigh fading.
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Fig. 3: Box plots for the minimum transmitted power in each
generated schedule for each number of transmissions in the
schedule.

We find that in the most robust schedule an outage is 149.4
times less likely to occur than in the least robust schedule -
the most robust schedule has 21 transmissions and the least
robust 31. Naturally the more transmissions occur, the less
robust a schedule will be, due to over packing at each slot.
Nonetheless even within each number of transmissions a great
variability is found. For schedules with 23 transmissions the
ratio between the probability of no outages of the most and
least robust schedules is 20.4 (the biggest difference) and, for
schedules with 35 transmissions the ratio is 2.8 (the lowest
difference).

6. FINAL REMARKS

In this paper Mixed Integer Programming formulations of the
MFSLP were briefly reviewed. We have identified a new
model that is more numerically stable (the constraint matrix
coefficients are just 0 or 1), with the penalty of having an
exponential number of constraints - suggesting a constraint
generation procedure to solve the model. In order to study the
properties of optimal schedules we detailed a cut generation
procedure to construct all optimal solutions.

The problem admits, in general, multiple optimal so-
lutions. The existence of multiple optimal solutions has
practical implications to system and protocol design. In our
small examples we have shown that optimal solutions exist to
the MFLSP with a wide difference in their power consump-
tion, throughput and robustness. This indicates that there is a
great scope to improve the performance of existing schedul-
ing algorithms by ensuring that the constructed schedules are
Pareto optimal. A particularly interesting Pareto solution,
in the context of energy efficiency, is the minimum frame
schedule at the least power consumption. The algorithms
we proposed to generate all optimal solutions can be used
in studying the production possibility frontier of wireless
networks and can be an important tool in the design and plan-

ning of wireless networks. They are also useful in providing
benchmark solutions to multi objective optimization algo-
rithms. As future avenues of research, heuristics need to be
developed that are able to explore the entire Pareto frontier
and are able to trade-off the conflicting objectives.
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