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ABSTRACT 

 

This paper proposes a new updating technique for adaptive 

Volterra kernels employed as nonlinear models for the 

identification of unknown feedback paths in acoustic nonlinear 

echo cancellation tasks. Considering that nonlinear distortions are 

mainly introduced for high input levels, the effective step size is 

shaped according to the instantaneous envelope of the excitation 

signal. The loudspeaker-enclosure-microphone setup is modeled 

using measured linear and quadratic Volterra kernels. The 

efficiency of the proposed method is compared to the one of the 

second-order Volterra filter that uses only the Normalized Least-

Mean-Square algorithm for kernel adaptation in terms of Echo 

Return Loss Enhancement. Simulations for different input 

signals show a superior behavior of the new approach in terms of 

convergence speed, considering the same steady-state error. 

 

Index Terms— Volterra filters, adaptive algorithms, 

acoustic echo cancellation, nonlinear distortions 

 

1. INTRODUCTION 

 

Acoustic echo cancellation techniques are mainly used in speech 
processing systems such as, e.g., mobile phones, hands-free 
devices or in teleconferencing setups. In these applications, 
the communication should be facilitated by removing 
acoustic echoes that result from the feedback of loudspeaker 
signals into microphones [1, 2]. The basic structure of an 
acoustic echo cancellation (AEC) scenario is presented in 
Fig. 1. Here, the two dashed boxes indicate both the 
loudspeaker-enclosure-microphone (LEM) setup that 
includes the acoustic hardware from the enclosure together with 
the audio signal and local noise levels and the adaptive filter. 
The role of the adaptive filter is to model the LEM path as 
accurately as possible. The common AEC works under the 
assumption that the LEM system can be sufficiently well 
described by a linear adaptive model [3]. Regarding the very 
small and often low-cost hardware components in recent 
mobile devices, however, this assumption will not always hold 
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Fig. 1. Acoustic echo cancellation setup. 
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Fig. 2. Nonlinear echo path. 

 

in practice since their nonlinear behavior cannot be accounted 
for. 

The main sources of nonlinearities along the acoustic echo 

path are illustrated in Fig. 2. One source of noticeable 

nonlinearities is an overdriven amplifier which shows a 

memoryless saturation characteristic as described in [4]. Another 

source is a small loudspeaker driven at high volume which 

causes nonlinear distortions with memory as discussed in [5]. 
Various structures for appropriate nonlinear AEC have been 

considered so far, such as adaptive Wiener and Volterra models 

in [6] or adaptive power filters in [7]. In this work we focus on a 

new nonlinear echo cancellation procedure that relies on the 

application of adaptive Volterra filters while also taking the 

excitation level into account. 

The paper is organized as follows: Sec. 2 describes the main 

features of the second-order Volterra structure along with the 

new adaptation procedure, while in Sec. 3 the simulation results 

are presented. Conclusions are drawn in Sec. 4. 
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2. PROPOSED STRUCTURE 

 

Assuming that the complete input/output characteristics of 

the LEM setup can be modeled sufficiently well by an N-th-

order truncated Volterra series, relation (1) can be used for 

this purpose [6]: 
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where ][kx  is the discrete input signal, ][kyNVF  is the 

output signal of the Volterra structure while 
pM  represents 

the memory length of each Volterra kernel. The p-th order 

Volterra kernel ]  ...,  ,[ˆ
1 pp mmh  exhibits a general symmetry  

( ]  ...,  ,[ˆ]  ...,  ,[ˆ
11 mmhmmh pppp  ) that is reflected in (1): 

only terms with non-decreasing indices (
1 pp mm ) are 

considered. The accuracy of the Volterra filter for identifying the 

nonlinear distortions found in the LEM structure will generally 

increase with the order and the memory size of the filter at the 

expense of increased computational complexity. As related in 

[8], the second-order Volterra filter is adequate to incorporate the 

type of nonlinearities encountered in the LEM setup without 

excessive computational cost. The output of a second-order 

Volterra filter can be written as the sum of the two kernel outputs 

][1 ky  and ][2 ky : 

],[][][ 212 kykyky VF             (2) 

where the two kernel outputs are computed as: 
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using the following vector definitions: 
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The number of terms embedded in the kernel vectors is 

determined by the order and the memory length of the actual 

filter as follows: 
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When dealing with second-order Volterra filters for 

nonlinear acoustic echo cancellation, the goal is to optimally 

approximate the distortions caused by the electroacoustic 

converters. Using this approach, the LEM characteristics are 

to be modeled by the linear and quadratic Volterra kernels 

starting from some initial values. The Volterra kernels are 

updated at each iteration of the input samples using an 

adaptive algorithm in order to minimize the residual error 

signal ][ke computed as: 

].[][][ 2 kykdke VF           (5) 

 

One of the most widely used adaptive filtering 

algorithms in practical error reduction scenarios is the 

Normalized Least-Mean-Square (NLMS) algorithm which 

takes into account the variation of the input signal statistics. 

In the following set of equations, the NLMS adaptation 

algorithm [9] is summarized for the linear and the second-

order Volterra kernels: 
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where   is a constant introduced to prevent division by 

zero. The step-size parameters 1  and 2  ( 21   ) are 

constants that are chosen from the range (0, 2) so as to 

guarantee a stable convergence in the mean [3]. The major 

disadvantage of selecting constant step-size parameters is 

the resulting tradeoff between the speed of convergence and 

the steady-state error [10]. If a small step size is chosen, a 

reduced steady-state error will be obtained at the cost of a 

slower convergence. Although the convergence can be 

boosted by using a larger step-size value, the steady-state 

error will significantly increase.  

The method proposed here to alleviate the above 

tradeoff consists in developing a new step size control that 

depends not only on the value of   but also on the short-

term envelope of the input signal. This dependency on the 

input signal is proposed because we want to increase the 

adaptation for the nonlinear kernel when high levels of the 

input are encountered. On the other hand, for small 

amplitudes of the excitation signal, small adaptation steps 

should be used for the quadratic kernel coefficients under 

the assumption that the LEM behaves mostly linear in these 

situations. 

The proposed excitation-dependent step-size control 

(ESC) is then given by (7) which represents the update 

equation of the second-order Volterra kernel: 
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while the update of the linear kernel is still carried out as 

given by (6). 
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In (7), the parameter   is computed as ,
1

:

0




x
  

where 0x  is set as a threshold for the input samples and β is 

selected for choosing the shape of the step-size function. 

The effective value of the new step size 


 ][2eff,2 kx  

depending on the input samples is depicted in Fig. 3 for

12  . The curves for the following values of β ({0,5; 1; 

2}) are illustrated in comparison to the standard NLMS 

(with 12  ) for the chosen reference 5.00 x . For input 

values larger than 0x  ( 0][ xkx  ) the obtained step size is 

larger than 2  in case of a usual NLMS-type adaptation 

according to (6). In each of the selected β cases this will 

speed up the convergence of the Volterra filter in the upper 

range of the input samples. For the lower range of input 

samples the ESC structure uses the common NLMS 

algorithm to update the second-order kernel as in (6) (using 

only 2  as step size). The convergence speed has been 

found to be too slow if we follow the curve of the effective 

step size with values smaller than 2 . This is a consequence 

of the large number of quadratic coefficients to be 

identified. The ESC structure is depicted in Fig. 4. 

 

3. EXPERIMENTAL RESULTS 

 

In the following section the second-order ESC Volterra 

method is tested in nonlinear echo cancellation setups in 

order to compare the speed of convergence of the new 

structure and the steady-state control of the error with the 

achieved echo reduction evolution of the second-order 

NLMS Volterra filter. The nonlinear LEM setup is modeled 

as a second-order polynomial written in Volterra form by 

outlining the linear and the nonlinear components of the 

microphone signal ][kd . Local noise ][kn  is added to the 

reference signal in addition to the nonlinear distortions. The 

Volterra expression of the LEM’s output follows the model 

as in [11]: 
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where ][1 kh  and ][2 kh  represent the linear and the 

quadratic kernels defined in vector form as in (3) that are 

measured from low-cost acoustic components in a low-

reverberant room. The linear and the quadratic kernels 

employed for the design of the LEM structure are depicted 

in Fig. 5 and have been obtained from measurements at a 

sampling rate of 8 kHz, with memory lengths equal to 320 

and 64x64 taps, respectively, so that they include all the 

coefficients with significant nonzero values. 

The levels of the so–called Linear–to–Nonlinear Ratio 

(LNLR) and Signal-to-Noise Ratio (SNR) are kept constant 

throughout the simulations with the help  of parameters ][k  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Input samples (x[k] ascending)

T
h
e
 v

a
lu

e
s
 o

f 
th

e
 n

e
w

 s
te

p
-s

iz
e
 f
o
r 

u 2
=

1

β=0,5 (with x0=1)

β=1 (with x0=1)

β=2 (with x0=1)

β=0,5 (with x0=0,5)

β=2 (with x0=0,5)

β=1 (with x0=0,5)

Default NLMS (β=0)

µ
2
,e

ff

x[k]  
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Fig. 4. Second-order Volterra structure using the ESC 

adaptation technique. 
 

and ][k . The LNLR is defined in this case as the ratio 

between the power of the microphone signal’s linear 

component and the power of its nonlinear component. The 

SNR is defined as the ratio of the reference signal power in 

the absence of local noise to the local noise power. The 

argument ][k  is set to keep the LNLR constant during 

simulations at 10 dB and also ][k  is selected properly to 

set the SNR at 30 dB. For the input, signals with different 

probability density functions are chosen: white Gaussian 

noise and nonstationary audio signals. Additive white 

Gaussian noise is used as local noise. In experiments the 

memory lengths of the Volterra filter kernels are selected to 

match those of the LEM system.  

The difference in the performance of the ESC and 

NLMS second-order Volterra structures is evaluated in 

terms of convergence rate and steady-state error by 

monitoring   the  Echo  Return  Loss  Enhancement  (ERLE) 
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Fig. 5. Linear kernel (top); quadratic kernel (bottom). 

 

quantity defined as: 

,[dB]    
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log10ERLE
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where }{E   denotes statistical expectation. 

In the first set of simulations white Gaussian noise is 

used as input signal. The step-size parameters for the ESC 

and NLMS Volterra structures are chosen 1.01   for the 

linear kernel and 05.02   for updating the quadratic 

kernel. The value of   is set 0.1 for input samples in the 

range [-1; 1]. Regarding the modeling of the ESC Volterra 

filter’s new step-size function and the input signal’s 

threshold above which the proposed method can be 

validated, the following values have been chosen: 5.0  

and 1.00 x . The evolution of ERLE for both nonlinear 

adaptive filters and for the linear filter can be observed in 

Fig. 6. The usage of only an adaptive NLMS linear filter for 

nonlinear acoustic echo cancellation involving the 

mentioned enclosure setup offers a high convergence speed, 

although the ERLE saturates at the established LNLR value 

of 10 dB. In contrast, for the two adaptive Volterra 

implementations the ERLE settles at 30 dB in each case, 

which is the SNR value. The difference between these two 

Volterra filter versions is obviously an improved 

convergence rate when using the ESC design without 

affecting the steady-state error too much. 

For the results depicted in Fig. 7 the same LEM structure 

is used, but a steeper evolution of the ESC step size is 

implemented ( 2 ). By using this value for the exponent 

 , the samples of the input signal above the mentioned 

threshold are emphasized even more, so that it will 

eventually affect the ESC structure’s step size, offering a 

better convergence for the high-amplitude input samples. 

We have to consider that for large values of 


 ][kx , the 

newly formed step size ff,2 e  that uses the value of 2  can 

exceed the range (0; 2) such that a stable convergence in the 

mean of the Volterra filter cannot be guaranteed anymore. In 

this case the value of 1  is reduced to 0.01 and for 2  to 0.002 

to form the new step size in the normal range of adaptation. The 

input threshold is set again to 1.00 x . By applying the 

specified step-size parameters 1  and 2 , the convergence rate 

of the NLMS linear and second-order Volterra filters will drop 

in comparison to the previous example. However, when 

exploiting the new value of the parameter  , the difference 

between the convergence rates of ERLE for the two adaptive 

second-order Volterra filters increases; the method that uses 

the ESC adaptation procedure converges faster than the 

classic NLMS approach for updating the Volterra kernels. 

Again the linear NLMS filter settles at 10 dB ERLE. 

In the next simulations different audio signals in the 

range (-1; 1) are used as input. To design the ESC’s input-

conditioned step size the following situation is proposed in 

order to benefit from the high valued samples of the input 

signal using 2  and 05.00 x . The coefficients 1  and 

2  are set to 0.1 and 0.005. Fig. 8 shows the ERLE 

evolution for the proposed methods and the signal 

intercepted by the microphone which is a nonlinearly 

distorted speech. In the following cases indicated in Fig. 9 

and Fig. 10, instrumental music and a song fragment are 

used as excitations. 

As it can be seen in all three cases with realistic, 

nonstationary input signals, the acoustic cancellation method 

that adapts its second-order Volterra kernel using the ESC 

procedure provides a better convergence of ERLE in 

comparison to the second-order NLMS Volterra filter. The two 

ERLE characteristics stabilize at a discharged echo amount of 

30 dB which indicates the chosen SNR value. Moreover, the 

NLMS linear adaptive filter reaches a steady-state ERLE of 

approximately 10 dB, equal to the LNLR value. 

 

4. CONCLUSIONS 

 

In this work a novel nonlinear excitation-dependent step-size 

control for the adaptation of an adaptive second-order Volterra 

filter was proposed in order to enhance the convergence of the 

nonlinear model parts in case of high input levels. To 

achieve this improvement, an amplitude threshold for the 

input signal was selected such only excitation samples 

above this threshold will lead to increased adaptation step-

size of the second-order kernel. The proposed method was 

tested for a real loudspeaker-enclosure-microphone setup 

that includes measured linear and quadratic distortions with 

specific noise conditions and level of nonlinear distortions. 

The effectiveness of the new nonlinear adaptation method 

for acoustic echo cancellation  was evaluated in terms of the 
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Fig. 6. ERLE evolution for white Gaussian noise with 

5.0 and 1.00 x (top); microphone signal (bottom). 

  

Fig. 7. ERLE evolution for white Gaussian noise with 

2  and 1.00 x (top); microphone signal (bottom). 

  

Fig. 8. ERLE evolution for speech as input (top); 

microphone signal (bottom). 

  
Fig. 9. ERLE evolution for instrumental music as input 

(top); microphone signal (bottom). 

  

Fig. 10. ERLE evolution for a song fragment as input (top); 

microphone intercepted signal (bottom). 

evolution of the residual error power in comparison to the 

second-order Volterra filter structure that uses the NLMS 

algorithm for adapting the kernels. The proposed structure 

has been shown to outperform the classic NLMS-type 

adaptation in terms of initial convergence. Simulations for 

white Gaussian noise and real nonstationary audio signals as 

excitations were provided. 

One can conclude that the proposed low-complexity method 

can be applied successfully in nonlinear acoustic echo 

cancellation scenarios for different real LEM setups, effecting 

better performance for different types of input signals. 
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