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ABSTRACT

Our goal is to obtain improved perceptual quality for sepa-
rated solo instruments and accompaniment in polyphonic mu-
sic. The proposed approach uses a pitch detection algorithm
in conjunction with a spectral filtering based source separa-
tion. The algorithm was designed to work with polyphonic
signals regardless of the main instrument, type of accompani-
ment or musical style. Our approach features a fundamental
frequency estimation stage, a refined harmonic structure for
the spectral mask and a post-processing stage to reduce ar-
tifacts. The processing chain has been kept light. The use
of perceptual measures for quality assessment revealed im-
proved quality in the extracted signals with respect to our pre-
vious approach. The results obtained with our algorithm were
compared with other state-of-the-art algorithms under SISEC
2011.

Index Terms— Separation, filtering, main melody, har-
monics.

1. INTRODUCTION AND PREVIOUS WORK

Due to the immense popularity of karaoke and music video
games, as well as the increasing interest in the development of
music education tools, the capability to extract main melodies
from musical recordings and subsequently obtain accompani-
ment tracks to play or sing along has gained a lot of attention
in the research community.

In this context, some systems have specifically dealt with
the problem of singing voice extraction from polyphonic au-
dio. In [1] a system based on classification of vocal/non-vocal
sections of the audio file, followed by a pitch detection stage
and grouping of the time-frequency tiles was proposed. In
[2], voice extraction is achieved by main melody transcription
and sinusoidal modeling. A system based on pitch detection
and non-negative matrix factorization (NMF) is proposed in
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[3]. Others have focused on the separation of harmonic from
percussive components of an audio track [4], [5]. Similarly, a
system is proposed in [6] to specifically address the extraction
of saxophone parts in classical saxophone recordings. More
general algorithms have also been proposed for main melody
separation regardless of the instrument used: Durrieu in [7]
proposes a source/filter approach with a two-stage parameter
estimation and Wiener filtering based separation. In [8] La-
grange proposes a main melody extraction system based on
a graph partitioning strategy - Normalized Cuts, sinusoidal
modeling and computational auditory scene analysis (CASA).

The remainder of this paper is organized as follows: Sec-
tion 2 describes the different stages of the proposed algorithm,
Section 3 presents the evaluation scheme and results and in
Section 4 we draw some conclusions and present future work.

2. PROPOSED SYSTEM

In this work, we aim to develop a system capable of separat-
ing main instruments from music accompaniment, regardless
of the type of solo instrument used, musical genre of the track
or type of music accompaniment. We focus on commercial
recordings of polyphonic music. The algorithm does not re-
quire any prior information for processing and has been kept
lightweight to allow real-time performance.

The system is composed of 5 building blocks shown in
Fig. 1 and further described in the next subsections. For
the remainder of this paper the following notation applies:
Let F}, ,, be the Short-Term Fourier Transform (STFT) of a
monaural signal f(t) and My, ,, = |F} | its magnitude spec-
trogram, with k the frequency index and n the time index. We
aim to decompose Mj, ,, into a main melody/solo component
Sk,n and an accompaniment component Ay, ,. The magni-
tude spectrogram of the audio signal is modeled as follows:
Mk,n = Ak,n + Sk,n-

2.1. Pitch Detection

For this system, the pitch detection algorithm described in [9]
is used. The performance of this algorithm was tested in the
Audio Melody Extraction task within the Music Information
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Fig. 1. Block diagram of

Retrieval eXchange (MIREX09) ! obtaining the best results
among all competing algorithms. During pitch extraction, an
analysis frame of 46 ms is used in conjunction with a hopsize
of 5.8 ms.

2.2. F0 Refinement

In order to improve the fO (fundamental frequency) estima-
tion delivered by the pitch detection algorithm, a refinement
stage is proposed where the magnitude spectrogram is inter-
polated in a narrow band around each initial fO value and its
constituent harmonics. For a particular time frame n:

(f fk1) ka2,n (fki_fh)Mkhn
f ko 7fk1
(L

with interpolation stepi = 1, ..., 4maz » fx, = f0/2(25/1200)
and f, = f0 - 2(25/1200) quarter tone deviations from the
initial fO location in Hz. For each interpolation step a cumu-
lative magnitude sum is obtained and the maximum position
is taken as an indicator of the new f0 value.

Mi,n = Mkl,n +

e f ks — Ja
f0, = argmaac M : -f0 (2
Z Hj, tmag )
with harmonic number h = 1, ..., hnqe- The calculated har-

monic location for each partial in each interpolation step is
givenby H! = fO-h-k; .

2.3. Harmonic Series Refinement

After a refined estimate of the fundamental frequency has
been obtained, the location of each harmonic component is
also refined. The two underlying principles at this stage are:
(1) Each harmonic component is allowed to have an inde-
pendent deviation from the calculated ideal location of the
harmonic, i.e., multiple integer of the fundamental frequency,
and (2) the acoustic differences between the voice, string
and wind instruments need to be considered when harmonic
components are located. While no prior information is given
to the algorithm regarding the instrument class, the harmonic

IMirex: http://www.music-ir.org/mirex/wiki/2009:Main_Page
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the proposed system.

refinement stage has to be kept consistent. Namely, inhar-
monicity characteristics differ between instrument families.
A well known characteristic of conical bore instruments, for
example, is the flattening of upper resonances in relation to
the fundamental component due to open end corrections in
the tone hole lattice [6]. To keep control of harmonic devi-
ations, each partial is allowed a maximum deviation p,,qz
from its harmonic location kj of one quarter tone. This
will guarantee that tones will remain perceptually harmonic.
For harmonic numbers h = 2,..., hyqs, time frame n and
ki, — pmaz < k < ki + pmaz, We define a detection matrix
dy,» such that :

1 for kg = argmax (My, ,,
d’(ch) _ 0 gk (Mj,n) 3)
0,1 .
0 otherwise

2.4. Spectral Masking

After the complete harmonic series has been estimated, initial
binary spectral masks for the solo Msk_ﬁ and accompaniment
M Ay, are created. At this stage, each time-frequency tile
is defined either as part of the solo instrument or part of the
accompaniment. To compensate for spectral leakage in the
time frequency transform, a tolerance band A centered at the
estimated location kg, is included in the masking procedure.
Thus, for a frequency range kg — A < k < kg + A and time
frame n we have:

(5., AL, ) = § MO0 i dien = 1
Skyns AR (0, My.,) otherwise

2.5. Post-Processing

In contrast to the previous stages, which are performed on
a frame by frame basis, the post-processing stage evaluates
each tone as a whole. Two specific events are here addressed:
(1) attack frames and (2) crosstalk of transients in solo sig-
nals.

The pitch detection algorithm requires a few processing
frames before a valid fO value can be detected. To compen-
sate for this inherent delay, a region of 70 ms before the start



of each tone ng, is searched for harmonic components that
correlate with the harmonic structure of the tone. The binary
masks M, Sy, and My ».n are modified accordingly to include
the attack frames found for each tone.

Due to overlapping of spectral information from differ-
ent sources, percussion hits are often detected as being part
of a tone. Bearing in mind that percussion onsets are evi-
dent in the spectrogram as vertical events occurring in a de-
fined time interval [4], a final analysis is performed, where
sudden magnitude peaks occurring simultaneously in several
harmonic components, are detected. As the perceptual im-
pact of the percussion onsets is stronger for higher harmon-
ics, this analysis is only performed for harmonics higher than
hmin- For each harmonic h > h,,;y,, a reference time trajec-

tory, tEL") = (M }(Ln)7 L) is obtained, where ® is a median
filter of length L [5]. Let 7, be the maximum magnitude

variation allowed and min; the minimum number of har-
monics where the event should simultaneously occur, then if

Msm > t%n)fyp for at least min; harmonics, then Msm =
tgw and,N14hn ::A4km —-AZS
are no longer binary.

v+ Lhe new spectral masks

2.6. Re-synthesis

Finally, the complex valued spectrogram is masked and inde-
pendent solo and accompaniment tracks are re-synthesized by
means of the inverse Short-Term Fourier Transform (ISTFT).
Thus, the solo track is Sy, = Fj n ® J\Zfs,m and the accom-
paniment track is Ay, = Fipn ® M Ay.» Where ® denotes
elementwise multiplication. The output solo and accompa-
niment tracks are then s (¢) = ISTFT (Sk,,) and a (t) =
ISTFT (Ak.n).

3. EVALUATION

3.1. Experiments

Two different sets of experiments were conducted in this
study: (1) The goal of the first experiment was to evaluate
the contribution of each processing stage into the quality of
the extracted signals. For this purpose, different versions of
the algorithm were created where the different processing
stages were bypassed and quality of resulting signals was
evaluated. (2) The second set of experiments tested the full
algorithm under SiSEC 2011 [10] conditions in the Profes-
sionally Produced Music Recordings task. For the SiSEC
2011, a dataset of multi-track recordings was made available
and a common evaluation scheme was established to test dif-
ferent algorithms. The PEASSS Toolkit, described in Section
3.3, was used for evaluation of results. The goal of this ex-
periment was to compare the performance of our algorithm
with other state-of-the-art approaches.
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3.2. Dataset

For the first experiment, three audio segments were selected
from multi-track recordings. Table 1 presents the main char-
acteristics of these signals. Signals 1 and 3 are publicly avail-
able 2, but due to copyright issues, Signal 2 is not publicly
available. For the second experiment, seven songs from the
SiSEC 2011 [10] dataset were used. Table 3 shows the signals
used for this experiment, all publicly available in the cam-
paign website 3

3.3. Quality Measures

The use of objective measures based on energy ratios be-
tween the signal’s components, i.e., Signal to Distortion Ratio
(SDR), Image to Spatial Distortion Ratio (ISR), Signal to In-
terference Ratio (SIR) and Signal to Artifacts Ratio (SAR),
has been the standard approach in the Sound Separation com-
munity to test the quality of extracted signals. However, due
to the fact that these measures do not directly correlate to per-
ceptual attributes, the results could potentially be misleading.
In the attempt to provide a more suitable tool for testing sep-
aration results, the PEASS Toolkit - Perceptual Evaluation
Methods for Audio Source Separation - has been developed
[11]. This system proposes a family of four objective mea-
sures with the aim of predicting a set of subjective scores. The
system makes use of auditory-motivated metrics to assess the
perceptual salience of the target distortion, interference and
artifacts. The family of objective measures is composed of the
Overall Perceptual Score (OPS), the Target-related Perceptual
Score (TPS), the Interference-related Perceptual Score (IPS)
and the Artifacts-related Perceptual Score (APS).

3.4. Discussion

For the two experiments, the following processing parameters
were used: Rpmaz = 25, A =1, hypin, = 8, and 7y, = 1.2,

3.4.1. Experiment 1: Contribution of processing blocks

The results of this experiment are presented in Table 2. The
final signals can be accessed in our result website *. As shown
in Table 2, for both the solo and accompaniment tracks, the
highest OPS is obtained with the full algorithm in two of the
three signals. However, in the case of Scenaric, where the
highest OPS is not reached for the solo, and in the case of
Natmin, where the highest OPS is not reached for the accom-
paniment, the scores of the full and the best variants are very
close. These results also suggest that each one of the different
processing stages contributes somehow to a perceptual gain

Zhttp://bass—db.gforge.inria.fr/BASS—dB/?show=
browse&id=mtracks

3http://sisec.wiki.irisa.fr/tiki-index.php?page=
Professionally+produced+music+recordings

“http://www.idmt.fhg.de/eng/business%20areas/
music_performance_applications.htm



Signal Num. Name Solo Instrument Accompaniment Duration [sec]
1 Natmin Electric Guitar Acoustic Guitar 1 & 2, Distorted Guitar, Bass, Bongos 14
2 Track 36 Alto Saxophone Piano, Bass, Drums 30
3 Scenaric Electric Guitar Drums, Synth. Bass, Synth. Lead, Rhythm Guitar 1 & 2 14

Table 1. Data set for Experiment 1: signals used to evaluate the contribution of the different processing blocks of the algorithm

1. Natmin 2. Track 36 3. Scenaric
OPS TPS 1PS APS OPS TPS IPS APS OPS TPS 1PS APS
1. S_Full 44.194 34.184 | 77.056 | 45.043 19.766 | 20.815 | 57.596 | 18.138 || 22.936 | 24.914 57.286 | 25.729
2. S_noF0 35.823 30.552 | 69.473 | 41.702 15.555 | 18.615 | 47.364 | 15.815 23.559 25.024 56.525 28.155
3. SnoHS | 42.622 29.287 74.922 | 45.503 17.211 | 17.749 | 52.436 | 16.108 || 22.913 13.326 60.763 21.629
4. S_noPP 10.542 10.760 | 46.873 6.236 14.414 | 17.759 | 54.366 9.748 8.574 15.847 33.639 6.636
5. A_Fulll 12.087 42.824 | 49.971 8.357 17.992 | 40.164 | 57.734 | 15.263 16.875 24.029 39.754 | 26.836
6. A_noF0 12.126 | 44.548 45.681 | 10.139 16.780 | 46.947 | 50.570 | 17.673 16.403 21.609 35.166 30.216
7. AnoHS | 12.558 | 45.2057 | 47.575 | 10.180 17.352 | 48.110 | 51.909 | 18.115 14.802 | 25.608 30.001 30.658
8. AnoPP | 12.234 | 51.391 56.699 6.518 16.962 | 39.606 | 55.169 | 14.827 15.534 | 26.2541 | 43.2442 | 19.474

Table 2. Resulting measures for all signals in Experiment 1. Signal variants: Full - all processing blocks included, noF0 - FO refinement
block removed, noHS - Harmonic refinement block removed, noPP - Post-Processing block removed. Signals 1-4 are the solo variants and

signals 5-8 the accompaniment variants.

in the extracted signals. The biggest perceptual improvement
for the solo signals (Signals 1-4) is obtained with the Post-
Processing block as for the noPP variants, the lowest OPS
and APS scores are always obtained. For the accompaniment
tracks (Signals 5-8), the lowest APS scores are always ob-
tained for the noPP but as can be seen, this is not the case
for the OPS. Our goal is to build an algorithm that will have
solid performance regardless of the signal used. This repre-
sents a big challenge given the great variability of signals. In
this sense, we aim not to obtain the highest OPS scores at
all times with the full algorithm, but to make sure that for
those cases where the highest OPS score is not reached with
full processing, the difference in terms of perceptual quality
with respect to the best variant is minimum. The accompani-
ment tracks show in general lower OPS scores compared to its
corresponding solo tracks. There are also some cases where
the variant that obtains the highest scores for the solo sig-
nal, also obtains the lowest scores for the accompaniment or
vice-versa, e.g., TPS of Track 36_noHS, IPS of Natmin_noPP,
OPS of Natmin_Full, TPS of Scenaric_noF0. This invalidates
the assumption that better solo signal extraction necessarily
translates into better accompaniment extraction and suggests
that the effects of some of the processing stages might be in-
creasing quality of the solo tracks at the expense of loosing
quality in the accompaniment tracks and vice-versa. Such ef-
fects need to be further studied to guarantee a quality balance
between the solo and the accompaniment at all times under
the condition My, ,, = Ay », + Sk.n

3.4.2. Experiment 2: SISEC 2011

For the Professionally Produced Music Recordings task in
SiSEC 2011, a total of seven algorithms were submitted [10].

For sake of simplicity, we only present in Table 3 our results
and compare them to the system proposed by Durrieu [12]—
both have the same final goal: main melody and accompani-
ment separation. For particular details of the algorithms and
the full table of results, we refer the reader to the campaign’s
website. It can be seen that our algorithm presents OPS val-
ues comparable to those obtained by Durrieu. Furthermore,
both algorithms show in general high IPS values that suggest
a successful isolation of the main melody. However, consis-
tently lower values for the TPS and APS are obtained with
our approach. This suggests that artifacts are still perceptu-
ally evident and work in detriment of the target source qual-
ity. It is important to point out that the main melody of all the
signals in this dataset was the voice. Informal experiments
have shown that our approach shows consistently lower re-
sults when dealing with the voice. This can also be seen in
Table 2, where instrumental signals are used and more homo-
geneous scores are obtained. Another important fact in this
analysis is time efficiency of the algorithms. While Durrieu’s
approach reports an average processing time of 600 sec per
excerpt, our algorithm requires an average of 8 sec per ex-
cerpt. This represents 1/75 of the processing time.

4. CONCLUSIONS

We presented a system for the separation of main instruments
from accompaniment in real world music recordings. With
the use of the PEASS toolkit, we found that our refinements
mostly resulted in an improved separation quality. The per-
formance of the algorithm was compared to state-of-the-art
approaches under the SiISEC 2011. Results show that our al-
gorithm achieves a good balance between performance and
efficiency. Further work needs to be conducted to improve
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Test Set Development Set
Tamy [V G] | Bea.[V] | Phil. [V] | Nine[V] | Hur. [V] Total An. [V] | NZ[V] Total
OPS | 228 | 257 18.3 26.1 32.1 13.3 24.1 25.0 37.7 31.3
TPS 7.0 55.7 5.0 1.7 0.4 11.1 304 1.6 0.3 1.0
Cano IPS | 65.7 | 53.7 58.6 75.2 62.5 61.1 59.1 67.3 69.6 68.4
APS | 134 | 456 13.2 32 0.7 19.8 27.9 3.5 0.5 2.0
OPS | 335 | 302 27.3 22.3 17.1 11.6 26.3 29.6 24.7 27.8
TPS | 40.0 | 79.6 33.1 35.4 22.5 13.2 54.2 43.0 39.7 422
Durrieu | TIPS | 71.8 | 34.5 57.1 56.1 58.0 51.8 46.7 65.2 66.7 65.0
APS | 379 | 577 35.7 34.0 25.4 21.0 443 35.1 27.5 32.5

Table 3. Results of Experiment 2 - SiSEC 2011: the algorithm presented by Durrieu [12] is compared with the proposed algorithm (Cano).
In the Table, [V] represents a voice signal and [G] a guitar signal. Short names are used to represent the different signals: Tamy- Tamy: Que
Pena Tanto Faz, Bea- Bearlin: Roads, Phil- Glen Philips: The Spirit of Shackleton, Nine- Nine Inch Nails: The Good Soldier, Hur- Shannon
Hurley: Sunrise, An- Another Dreamer: The Ones We Love, NZ- Ultimate NZ Tour.

the quality of voice signals. The development of quality mea-
sures is still work in progress. Furthermore, the concept of
quality is strongly dependent on the application considered.
For this reason, the reader is always advised to contrast the
numerical results by listening to the resulting signals.
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